-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathround.go
205 lines (185 loc) · 5.57 KB
/
round.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright 2016 The Cockroach Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
// implied. See the License for the specific language governing
// permissions and limitations under the License.
package apd
// Round sets d to rounded x, rounded to the precision specified by c. If c
// has zero precision, no rounding will occur. If c has no Rounding specified,
// RoundHalfUp is used.
func (c *Context) Round(d, x *Decimal) (Condition, error) {
return c.goError(c.round(d, x))
}
//gcassert:inline
func (c *Context) round(d, x *Decimal) Condition {
return c.Rounding.Round(c, d, x, true /* disableIfPrecisionZero */)
}
// Rounder specifies the behavior of rounding.
type Rounder string
// ShouldAddOne returns true if 1 should be added to the absolute value
// of a number being rounded. result is the result to which the 1 would
// be added. neg is true if the number is negative. half is -1 if the
// discarded digits are < 0.5, 0 if = 0.5, or 1 if > 0.5.
func (r Rounder) ShouldAddOne(result *BigInt, neg bool, half int) bool {
// NOTE: this is written using a switch statement instead of some
// other form of dynamic dispatch to assist Go's escape analysis.
switch r {
case RoundDown:
return roundDown(result, neg, half)
case RoundHalfUp:
return roundHalfUp(result, neg, half)
case RoundHalfEven:
return roundHalfEven(result, neg, half)
case RoundCeiling:
return roundCeiling(result, neg, half)
case RoundFloor:
return roundFloor(result, neg, half)
case RoundHalfDown:
return roundHalfDown(result, neg, half)
case RoundUp:
return roundUp(result, neg, half)
case Round05Up:
return round05Up(result, neg, half)
default:
return roundHalfUp(result, neg, half)
}
}
// Round sets d to rounded x.
func (r Rounder) Round(c *Context, d, x *Decimal, disableIfPrecisionZero bool) Condition {
d.Set(x)
nd := x.NumDigits()
xs := x.Sign()
var res Condition
if disableIfPrecisionZero && c.Precision == 0 {
// Rounding has been disabled.
return d.setExponent(c, nd, res, int64(d.Exponent))
}
// adj is the adjusted exponent: exponent + clength - 1
if adj := int64(x.Exponent) + nd - 1; xs != 0 && adj < int64(c.MinExponent) {
// Subnormal is defined before rounding.
res |= Subnormal
// setExponent here to prevent double-rounded subnormals.
res |= d.setExponent(c, nd, res, int64(d.Exponent))
return res
}
diff := nd - int64(c.Precision)
if diff > 0 {
if diff > MaxExponent {
return SystemOverflow | Overflow
}
if diff < MinExponent {
return SystemUnderflow | Underflow
}
res |= Rounded
var y, m BigInt
e := tableExp10(diff, &y)
y.QuoRem(&d.Coeff, e, &m)
if m.Sign() != 0 {
res |= Inexact
var discard Decimal
discard.Coeff.Set(&m)
discard.Exponent = int32(-diff)
if r.ShouldAddOne(&y, x.Negative, discard.Cmp(decimalHalf)) {
roundAddOne(&y, &diff)
}
}
d.Coeff.Set(&y)
// The coefficient changed, so recompute num digits in setExponent.
nd = unknownNumDigits
} else {
diff = 0
}
res |= d.setExponent(c, nd, res, int64(d.Exponent), diff)
return res
}
// roundAddOne adds 1 to abs(b).
func roundAddOne(b *BigInt, diff *int64) {
if b.Sign() < 0 {
panic("unexpected negative")
}
nd := NumDigits(b)
b.Add(b, bigOne)
nd2 := NumDigits(b)
if nd2 > nd {
b.Quo(b, bigTen)
*diff++
}
}
// roundings is a set containing all available Rounders.
var roundings = map[Rounder]struct{}{
RoundDown: {},
RoundHalfUp: {},
RoundHalfEven: {},
RoundCeiling: {},
RoundFloor: {},
RoundHalfDown: {},
RoundUp: {},
Round05Up: {},
}
const (
// RoundDown rounds toward 0; truncate.
RoundDown Rounder = "down"
// RoundHalfUp rounds up if the digits are >= 0.5.
RoundHalfUp Rounder = "half_up"
// RoundHalfEven rounds up if the digits are > 0.5. If the digits are equal
// to 0.5, it rounds up if the previous digit is odd, always producing an
// even digit.
RoundHalfEven Rounder = "half_even"
// RoundCeiling towards +Inf: rounds up if digits are > 0 and the number
// is positive.
RoundCeiling Rounder = "ceiling"
// RoundFloor towards -Inf: rounds up if digits are > 0 and the number
// is negative.
RoundFloor Rounder = "floor"
// RoundHalfDown rounds up if the digits are > 0.5.
RoundHalfDown Rounder = "half_down"
// RoundUp rounds away from 0.
RoundUp Rounder = "up"
// Round05Up rounds zero or five away from 0; same as round-up, except that
// rounding up only occurs if the digit to be rounded up is 0 or 5.
Round05Up Rounder = "05up"
)
func roundDown(result *BigInt, neg bool, half int) bool {
return false
}
func roundUp(result *BigInt, neg bool, half int) bool {
return true
}
func round05Up(result *BigInt, neg bool, half int) bool {
var z BigInt
z.Rem(result, bigFive)
if z.Sign() == 0 {
return true
}
z.Rem(result, bigTen)
return z.Sign() == 0
}
func roundHalfUp(result *BigInt, neg bool, half int) bool {
return half >= 0
}
func roundHalfEven(result *BigInt, neg bool, half int) bool {
if half > 0 {
return true
}
if half < 0 {
return false
}
return result.Bit(0) == 1
}
func roundHalfDown(result *BigInt, neg bool, half int) bool {
return half > 0
}
func roundFloor(result *BigInt, neg bool, half int) bool {
return neg
}
func roundCeiling(result *BigInt, neg bool, half int) bool {
return !neg
}