-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcentral_widget.py
615 lines (495 loc) · 30.7 KB
/
central_widget.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
from PyQt5.QtWidgets import *
from PyQt5.QtCore import *
from PyQt5.QtGui import *
from user_interface import UserInterface
from movie_panel import MoviePanel
from GL_widget_viewer import GL_Widget
from document import Document
from rectangle import Rectangle_Tool
from quad import Quad_Tool
from util.kf_dialogue import KF_dialogue
from util.util import *
import cv2, time, copy, os
import numpy as np
import pyautogui
from scipy.spatial import distance
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import torch
torch.set_grad_enabled(False)
class Widget(QWidget):
def __init__(self, parent=None):
# Widget.__init__(self, parent)
super().__init__(parent)
self.kf_method = ""
self.thumbnail_text_stylesheet = """color:black;
font-weight:bold;
background-color:none;"""
self.featured_frame_stylesheet = """color:red;
font-weight:bold;
background-color:none;"""
self.thumbnail_height = 96
self.thumbnail_width = 120
self.copied_data = {}
self.selected_thumbnail_index = -1
self.monitor_width = pyautogui.size()[0]
self.monitor_height = pyautogui.size()[1]
self.main_file = parent
self.gl_viewer = GL_Widget(self)
self.doc = Document(self)
self.ui = UserInterface(self)
self.mv_panel = MoviePanel(self)
self.rect_obj = Rectangle_Tool(self)
self.quad_obj = Quad_Tool(self)
self.old_thumbnail_index = -1
self.bool_shift_pressed = False
def find_kfs(self):
if self.kf_method == "Regular":
kfs = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_regular
elif self.kf_method == "Network":
kfs = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_network
else:
kfs = []
return kfs
def set_kf_method(self):
if len(self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_regular) > 0:
self.kf_method = "Regular"
elif len(self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_network) > 0:
self.kf_method = "Network"
else:
self.kf_method = ""
def extract(self):
b = True
old_method = self.kf_method
if self.kf_method == "":
self.kf_method = "Regular"
dlg = KF_dialogue(self.kf_method)
if dlg.exec():
self.kf_method = dlg.kf_met
kfs = self.find_kfs()
if len(kfs) >0:
b = show_dialogue()
if b:
v1 = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx]
if v1.cap_exist:
w = Dialog()
w.show()
if self.kf_method == "Regular":
num_img = int(dlg.e1.text())
bool_extracted = v1.extract_frames_regularly(num_img)
if bool_extracted:
self.ui.radiobutton1.setChecked(True)
# self.main_file.logfile.info("Frames extracted by regular extraction method ....")
else:
numberOfFrames_dialogue()
elif self.kf_method == "Network":
# print("Going to extract frames")
v1.cleanSequence()
# print(len(v1.key_frames_network))
self.ui.radiobutton2.setChecked(True)
# self.main_file.logfile.info("Frames extracted by Network extraction method ....")
w.done(0)
self.selected_thumbnail_index = -1
self.populate_scrollbar()
else:
not_extractKF_dialogue()
self.kf_method = old_method
# self.main_file.logfile.info("Not extracting frames. Frame extraction method is : "+self.kf_method+" ....")
else:
self.kf_method = dlg.kf_met
# self.main_file.logfile.info("Not extracting frames. Frame extraction method is : "+self.kf_method+" ....")
# else:
# self.main_file.logfile.info("Not extracting frames. Frame extraction method is : "+self.kf_method+" ....")
def populate_scrollbar(self, disp_idx = -1):
widget = QWidget()
self.grid_layout = QHBoxLayout()
row_in_grid_layout = 0
kfs = self.find_kfs()
if len(kfs) > 0:
# self.main_file.logfile.info("Populating scrolbar ....")
for i, img in enumerate(kfs):
img_label = QLabel("")
img_label.setAlignment(Qt.AlignCenter)
text_label = QLabel(str(i+1))
text_label.setAlignment(Qt.AlignCenter)
text_label.setFont(QFont("Sanserif", 10))
if i in self.gl_viewer.obj.img_indices and self.gl_viewer.is_display():
text_label.setStyleSheet(self.featured_frame_stylesheet)
else:
text_label.setStyleSheet(self.thumbnail_text_stylesheet)
pixmap_scaled = convert_cv_qt(img, self.thumbnail_width, self.thumbnail_height)
img_label.setPixmap(pixmap_scaled)
img_label.mousePressEvent = lambda e, index=row_in_grid_layout, file_img=img: \
self.on_thumbnail_click(e, index)
thumbnail = QBoxLayout(QBoxLayout.TopToBottom)
thumbnail.addWidget(img_label)
thumbnail.addWidget(text_label)
self.grid_layout.addLayout(thumbnail)
row_in_grid_layout += 1
widget.setLayout(self.grid_layout)
self.ui.scroll_area.setWidget(widget)
self.gl_viewer.obj.feature_panel.display_data()
if disp_idx != -1:
self.displayThumbnail(disp_idx)
else:
self.gl_viewer.util_.setPhoto()
def on_thumbnail_click(self, event, index):
if self.selected_thumbnail_index != -1:
self.old_thumbnail_index = self.selected_thumbnail_index
self.displayThumbnail(index)
def displayThumbnail(self, index):
# self.main_file.logfile.info("Display image number : "+str(index+1)+" ....")
self.selected_thumbnail_index = index
# print(self.old_thumbnail_index, self.selected_thumbnail_index)
# print(self.gl_viewer.util_.bool_shift_pressed)
if self.bool_shift_pressed:
self.bool_shift_pressed = False
self.superglue_detection(self.old_thumbnail_index, self.selected_thumbnail_index)
## Deselect all thumbnails in the image selector
for text_label_index in range(len(self.grid_layout)):
# print(text_label_index)
text_label = self.grid_layout.itemAt(text_label_index).itemAt(1).widget()
if text_label_index in self.gl_viewer.obj.img_indices and self.gl_viewer.is_display():
# print(text_label_index)
text_label.setStyleSheet(self.featured_frame_stylesheet)
else:
text_label.setStyleSheet(self.thumbnail_text_stylesheet)
## Select the single clicked thumbnail
text_label_of_thumbnail = self.grid_layout.itemAt(index).itemAt(1).widget()
if index in self.gl_viewer.obj.img_indices and self.gl_viewer.is_display():
text_label_of_thumbnail.setStyleSheet("background-color:rgb(135, 206, 235);"
"color:red;"
"font-weight:bold;")
else:
text_label_of_thumbnail.setStyleSheet("background-color:rgb(135, 206, 235);"
"color:black;"
"font-weight:bold;")
if self.kf_method == "Regular" and len(self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_regular) > 0:
img_file = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_regular[self.selected_thumbnail_index]
elif self.kf_method == "Network" and len(self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_network) > 0:
img_file = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx].key_frames_network[self.selected_thumbnail_index]
else:
img_file = None
self.gl_viewer.util_.setPhoto(img_file)
if self.gl_viewer.obj.fundamental_mat is None:
self.gl_viewer.obj.feature_panel.selected_feature_idx = -1
self.bool_shift_pressed = False
def copy_features(self):
# print("Copy features")
t = self.selected_thumbnail_index
self.copied_data = {}
if t != -1:
self.copied_data = {"img_index" : t,
"old_kf_method" : self.kf_method,
"old_movie_idx" : self.mv_panel.selected_movie_idx}
copy_dialogue()
# self.main_file.logfile.info("-------------------- Copied feature data on the frame "+str(t+1)+" ---------------------------------- ....")
else:
noImage_dialogue()
def paste_features(self):
if len(self.copied_data)==0:
copy_features_dialogue()
else:
# self.main_file.logfile.info("--------------------- Pasting feature data on the frame "+str(self.selected_thumbnail_index+1)+" --------------------------- ....")
v = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx]
t = self.copied_data["img_index"]
old_kf = self.copied_data["old_kf_method"]
old_mv = self.copied_data["old_movie_idx"]
sliding_window_size = 1
resize_scale = 1/8
search_pixels = int(resize_scale*64)
if old_mv != self.mv_panel.selected_movie_idx:
switch_movie_dialogue()
else:
if old_kf == "Regular" and self.kf_method == "Regular":
if v.n_objects_kf_regular[self.selected_thumbnail_index] == 0:
sift = cv2.SIFT_create()
old_frame = v.key_frames_regular[t]
old_frame = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
old_frame = cv2.resize(old_frame, None, fx=resize_scale, fy=resize_scale, interpolation = cv2.INTER_AREA)
new_frame = v.key_frames_regular[self.selected_thumbnail_index]
new_frame = cv2.cvtColor(new_frame, cv2.COLOR_BGR2GRAY)
new_frame = cv2.resize(new_frame, None, fx=resize_scale, fy=resize_scale, interpolation = cv2.INTER_AREA)
w = Dialog()
w.show()
for i, fc in enumerate(v.features_regular[t]):
if not v.hide_regular[t][i]:
x_loc, y_loc = int(resize_scale*self.gl_viewer.obj.feature_panel.transform_x(fc.x_loc)), int(resize_scale*self.gl_viewer.obj.feature_panel.transform_y(fc.y_loc))
old_patch = old_frame[y_loc - search_pixels:y_loc + search_pixels, x_loc - search_pixels:x_loc + search_pixels]
# cv2.imwrite('old_patch_'+str(i)+'.jpg', old_patch)
kp1 = cv2.KeyPoint.convert([(x_loc, y_loc)])
(kps1, patch1_desc) = sift.compute(old_frame, kp1)
distance_matrix = 100000*np.ones(shape=(4*search_pixels , 4*search_pixels))
j_idx = 0
all_kps2 = []
all_desc2 = []
# print(x_loc, y_loc)
for j in range(-2*search_pixels, 2*search_pixels, sliding_window_size):
k_idx = 0
kps2_temp = []
desc2_temp = []
for k in range(-2*search_pixels, 2*search_pixels, sliding_window_size):
kp2 = cv2.KeyPoint.convert([(x_loc + j, y_loc + k)])
(kps2, patch2_desc) = sift.compute(new_frame, kp2)
# print(patch2_desc.shape)
# print("==========================")
kps2_temp.append(kps2)
desc2_temp.append(patch2_desc)
dist = np.linalg.norm(patch1_desc - patch2_desc)
distance_matrix[j_idx, k_idx] = dist
k_idx += 1
all_kps2.append(kps2_temp)
all_desc2.append(desc2_temp)
j_idx = j_idx + 1
min_indices = np.unravel_index(distance_matrix.argmin(), distance_matrix.shape)
kps2 = all_kps2[min_indices[0]][min_indices[1]]
desc2 = all_desc2[min_indices[0]][min_indices[1]]
# cv2.imwrite('final_img_'+str(i)+'.jpg', out)
x_shift, y_shift = self.gl_viewer.obj.feature_panel.inv_trans_x(kps2[0].pt[0]*(1/resize_scale)) + 2 , self.gl_viewer.obj.feature_panel.inv_trans_y(kps2[0].pt[1]*(1/resize_scale)) + 2
# x_shift, y_shift = self.calc_shifts(patch1_rgb, patch2_rgb, i, patch_size, search_patch_factor)
self.gl_viewer.obj.add_feature(x_shift, y_shift)
else:
# print("Adding and deleting feature")
self.gl_viewer.obj.add_feature(fc.x_loc, fc.y_loc)
self.gl_viewer.obj.feature_panel.selected_feature_idx = i
self.gl_viewer.obj.delete_feature()
w.done(0)
else:
filledImage_dialogue()
elif old_kf == "Network" and self.kf_method == "Network":
if v.n_objects_kf_network[self.selected_thumbnail_index] == 0:
sift = cv2.SIFT_create()
old_frame = v.key_frames_network[t]
old_frame = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
old_frame = cv2.resize(old_frame, None, fx=resize_scale, fy=resize_scale, interpolation = cv2.INTER_AREA)
new_frame = v.key_frames_network[self.selected_thumbnail_index]
new_frame = cv2.cvtColor(new_frame, cv2.COLOR_BGR2GRAY)
new_frame = cv2.resize(new_frame, None, fx=resize_scale, fy=resize_scale, interpolation = cv2.INTER_AREA)
w = Dialog()
w.show()
for i, fc in enumerate(v.features_network[t]):
if not v.hide_network[t][i]:
x_loc, y_loc = int(resize_scale*self.gl_viewer.obj.feature_panel.transform_x(fc.x_loc)), int(resize_scale*self.gl_viewer.obj.feature_panel.transform_y(fc.y_loc))
old_patch = old_frame[y_loc - search_pixels:y_loc + search_pixels, x_loc - search_pixels:x_loc + search_pixels]
kp1 = cv2.KeyPoint.convert([(x_loc, y_loc)])
(kps1, patch1_desc) = sift.compute(old_frame, kp1)
distance_matrix = 100000*np.ones(shape=(4*search_pixels , 4*search_pixels))
j_idx = 0
all_kps2 = []
all_desc2 = []
# print(x_loc, y_loc)
for j in range(-2*search_pixels, 2*search_pixels, sliding_window_size):
k_idx = 0
kps2_temp = []
desc2_temp = []
for k in range(-2*search_pixels, 2*search_pixels, sliding_window_size):
kp2 = cv2.KeyPoint.convert([(x_loc + j, y_loc + k)])
(kps2, patch2_desc) = sift.compute(new_frame, kp2)
kps2_temp.append(kps2)
desc2_temp.append(patch2_desc)
dist = np.linalg.norm(patch1_desc - patch2_desc)
distance_matrix[j_idx, k_idx] = dist
k_idx += 1
all_kps2.append(kps2_temp)
all_desc2.append(desc2_temp)
j_idx = j_idx + 1
min_indices = np.unravel_index(distance_matrix.argmin(), distance_matrix.shape)
kps2 = all_kps2[min_indices[0]][min_indices[1]]
desc2 = all_desc2[min_indices[0]][min_indices[1]]
# cv2.imwrite('final_img_'+str(i)+'.jpg', out)
x_shift, y_shift = self.gl_viewer.obj.feature_panel.inv_trans_x(kps2[0].pt[0]*(1/resize_scale)) + 2 , self.gl_viewer.obj.feature_panel.inv_trans_y(kps2[0].pt[1]*(1/resize_scale)) + 2
self.gl_viewer.obj.add_feature(x_shift, y_shift)
else:
# print("Adding and deleting feature")
self.gl_viewer.obj.add_feature(fc.x_loc, fc.y_loc)
self.gl_viewer.obj.feature_panel.selected_feature_idx = i
self.gl_viewer.obj.delete_feature()
w.done(0)
else:
filledImage_dialogue()
else:
switch_kf_dialogue()
def read_image_for_superglue(self, image_rgb, device, resize, rotation, resize_float):
image = cv2.cvtColor(image_rgb, cv2.COLOR_BGR2GRAY)
if image is None:
return None, None, None
w, h = image.shape[1], image.shape[0]
w_new, h_new = w, h
# w_new, h_new = process_resize(w, h, resize)
scales = (float(w) / float(w_new), float(h) / float(h_new))
if resize_float:
image = cv2.resize(image.astype('float32'), (w_new, h_new))
else:
image = cv2.resize(image, (w_new, h_new)).astype('float32')
if rotation != 0:
image = np.rot90(image, k=rotation)
if rotation % 2:
scales = scales[::-1]
inp = torch.from_numpy(image/255.).float()[None, None].to(device)
return image, inp, scales
def superglue_detection(self, idx0, idx1):
v = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx]
if idx0 != idx1:
if self.kf_method == "Regular":
images = v.key_frames_regular
x1_idx0, x1_idx1 = v.select_x1_regular[idx0], v.select_x1_regular[idx1]
y1_idx0, y1_idx1 = v.select_y1_regular[idx0], v.select_y1_regular[idx1]
w_idx0, w_idx1 = v.select_w_regular[idx0], v.select_w_regular[idx1]
h_idx0, h_idx1 = v.select_h_regular[idx0], v.select_h_regular[idx1]
elif self.kf_method == "Network":
images = v.key_frames_network
x1_idx0, x1_idx1 = v.select_x1_network[idx0], v.select_x1_network[idx1]
y1_idx0, y1_idx1 = v.select_y1_network[idx0], v.select_y1_network[idx1]
w_idx0, w_idx1 = v.select_w_network[idx0], v.select_w_network[idx1]
h_idx0, h_idx1 = v.select_h_network[idx0], v.select_h_network[idx1]
if len(images) == 0:
no_keyframe_dialogue()
else:
if not os.path.exists(os.path.join(os.getcwd(), 'models')):
# self.main_file.logfile.info("User did not place models folder inside MoReLab ....")
models_folder_dialogue()
else:
from models.matching import Matching
from models.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot_fast,
error_colormap, AverageTimer, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics, process_resize, frame2tensor)
# self.main_file.logfile.info("AI-based automatic detection is starting ....")
w = Dialog()
w.show()
image0, image1 = images[idx0], images[idx1]
if x1_idx0 != -1:
image0 = image0[self.gl_viewer.obj.feature_panel.transform_y(y1_idx0) : self.gl_viewer.obj.feature_panel.transform_y(y1_idx0+h_idx0), self.gl_viewer.obj.feature_panel.transform_x(x1_idx0) : self.gl_viewer.obj.feature_panel.transform_x(x1_idx0+w_idx0)]
if x1_idx1 != -1:
image1 = image1[self.gl_viewer.obj.feature_panel.transform_y(y1_idx1) : self.gl_viewer.obj.feature_panel.transform_y(y1_idx1+h_idx1), self.gl_viewer.obj.feature_panel.transform_x(x1_idx1) : self.gl_viewer.obj.feature_panel.transform_x(x1_idx1+w_idx1)]
# Load the SuperPoint and SuperGlue models.
if torch.cuda.is_available():
device = 'cuda'
else:
device = 'cpu'
# self.main_file.logfile.info("Detection is being done on device "+device+" ....")
config = {
'superpoint': {
'nms_radius': 4,
'keypoint_threshold': 0.005,
'max_keypoints': 1024
},
'superglue': {
'weights': "indoor",
'sinkhorn_iterations': 20,
'match_threshold': 0.5,
}
}
matching = Matching(config).eval().to(device)
# Load the image pair.
image0, inp0, scales0 = self.read_image_for_superglue(image0, device, [-1], 0, False)
image1, inp1, scales1 = self.read_image_for_superglue(image1, device, [-1], 0, False)
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
# Keep the matching keypoints.
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
if self.kf_method == "Regular":
fc_list_idx0 = v.features_regular[idx0]
fc_list_idx1 = v.features_regular[idx1]
num_idx0 = v.n_objects_kf_regular[idx0]
num_idx1 = v.n_objects_kf_regular[idx1]
elif self.kf_method == "Network":
fc_list_idx0 = v.features_network[idx0]
fc_list_idx1 = v.features_network[idx1]
num_idx0 = v.n_objects_kf_network[idx0]
num_idx1 = v.n_objects_kf_network[idx1]
# print("Number of matching keypoints detected : "+str(mkpts0.shape[0]))
# self.main_file.logfile.info("Number of matching keypoints detected : "+str(mkpts0.shape[0])+" ....")
max_label = 0
if num_idx0 > 0 or num_idx1 > 1:
labels_idx0, labels_idx1 = [], []
for fc_idx0 in fc_list_idx0:
labels_idx0.append(int(fc_idx0.label))
for fc_idx1 in fc_list_idx1:
labels_idx1.append(int(fc_idx1.label))
max_label = max(max(labels_idx0, default=0), max(labels_idx1, default=0))
# print("Maximum label : "+str(max_label))
# self.main_file.logfile.info("Maximum label : "+str(max_label)+" ....")
i_idx = 0
for i in range(mkpts0.shape[0]):
if x1_idx0 != -1:
x0, y0 = self.gl_viewer.obj.feature_panel.inv_trans_x(mkpts0[i, 0]) - self.gl_viewer.util_.w1 + x1_idx0, self.gl_viewer.obj.feature_panel.inv_trans_y(mkpts0[i, 1]) - self.gl_viewer.util_.h1 + y1_idx0
else:
x0, y0 = self.gl_viewer.obj.feature_panel.inv_trans_x(mkpts0[i, 0]) + x1_idx0, self.gl_viewer.obj.feature_panel.inv_trans_y(mkpts0[i, 1]) + y1_idx0
if x1_idx1 != -1:
x1, y1 = self.gl_viewer.obj.feature_panel.inv_trans_x(mkpts1[i, 0]) - self.gl_viewer.util_.w1 + x1_idx1, self.gl_viewer.obj.feature_panel.inv_trans_y(mkpts1[i, 1]) - self.gl_viewer.util_.h1 + y1_idx1
else:
x1, y1 = self.gl_viewer.obj.feature_panel.inv_trans_x(mkpts1[i, 0]) + x1_idx1, self.gl_viewer.obj.feature_panel.inv_trans_y(mkpts1[i, 1]) + y1_idx1
new_label_0, x0, y0 = self.check_neighbour(x0, y0, fc_list_idx0)
new_label_1, x1, y1 = self.check_neighbour(x1, y1, fc_list_idx1)
if new_label_0 != -1 and new_label_1 == -1:
self.gl_viewer.obj.add_feature(x0, y0, new_label_0, idx0)
self.gl_viewer.obj.add_feature(x1, y1, new_label_0, idx1)
elif new_label_0 == -1 and new_label_1 != -1:
self.gl_viewer.obj.add_feature(x0, y0, new_label_1, idx0)
self.gl_viewer.obj.add_feature(x1, y1, new_label_1, idx1)
else:
self.gl_viewer.obj.add_feature(x0, y0, max_label+i_idx+1, idx0)
self.gl_viewer.obj.add_feature(x1, y1, max_label+i_idx+1, idx1)
i_idx += 1
w.done(0)
# self.main_file.logfile.info("AI-based automatic detection has been completed ....")
else:
same_image_dialogue()
def check_neighbour(self, x, y, fc_list):
threshold = 2
label = -1
for i, fc in enumerate(fc_list):
dist = np.sqrt(np.square(x - fc.x_loc) + np.square(y - fc.y_loc))
if dist < threshold:
label = int(fc.label)
x = fc.x_loc
y = fc.y_loc
break
return label, x, y
def keyReleaseEvent(self, event):
if self.bool_shift_pressed:
self.bool_shift_pressed = False
super(Widget, self).keyReleaseEvent(event)
def keyPressEvent(self, event):
######################## Copy and Pase features ########################
if self.ui.cross_hair and event.modifiers() & Qt.ControlModifier:
self.gl_viewer.obj.feature_panel.selected_feature_idx = -1
if event.key() == Qt.Key_C:
self.copy_features()
elif event.key() == Qt.Key_V:
self.paste_features()
######################## SuperGlue Detection using Shift Key ########################
if event.modifiers() & Qt.ShiftModifier :
self.bool_shift_pressed = True
if event.modifiers() & Qt.ControlModifier and event.key() == Qt.Key_R:
if self.selected_thumbnail_index == -1:
noFrameSelected_dialogue()
else:
v = self.mv_panel.movie_caps[self.mv_panel.selected_movie_idx]
idx0 = self.selected_thumbnail_index
# self.main_file.logfile.info("--------------- Resetting the frame number : "+str(idx0+1)+" --------------------- ....")
if self.kf_method == "Regular":
v.n_objects_kf_regular[idx0] = 0
v.measured_pos_regular[idx0] = []
v.measured_distances_regular[idx0] = []
v.features_regular[idx0] = []
v.hide_regular[idx0] = []
v.count_deleted_regular[idx0] = []
elif self.kf_method == "Network":
v.n_objects_kf_network[idx0] = 0
v.measured_pos_network[idx0] = []
v.measured_distances_network[idx0] = []
v.features_network[idx0] = []
v.hide_network[idx0] = []
v.count_deleted_network[idx0] = []
self.gl_viewer.obj.initialize_mats()
self.populate_scrollbar(idx0)
resetFrame_dialogue()
super(Widget, self).keyPressEvent(event)