-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·268 lines (251 loc) · 11.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#!/bin/env python
import torch
import torch.nn as nn
from torch.autograd import Variable
from torch.nn import functional as f
# from torch.utils.tensorboard import SummaryWriter
from torch.cuda.amp import autocast
import torch.utils.data as udata
import torch.optim as optim
import os
from models import DNN, DNN_GRF
from dataset import RootDataset
import matplotlib.pyplot as plt
from magiconfig import ArgumentParser, MagiConfigOptions, ArgumentDefaultsRawHelpFormatter
from configs import configs as c
import numpy as np
from tqdm import tqdm
from Disco import distance_corr
import copy
from GPUtil import showUtilization as gpu_usage
from dataset_sampler import getDataset
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["NCCL_DEBUG"] = "INFO"
def init_weights(m):
if type(m) == nn.Linear:
torch.nn.init.xavier_uniform_(m.weight)
m.bias.data.fill_(0.01)
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def processBatch(args, device, data, model, criterion, lambdas):
data, dcorrVar, label = data["data"], data["dcorrVar"], data["label"]
l1, l2, lgr, ldc = lambdas
#print("\n Initial GPU Usage")
#gpu_usage()
with autocast():
output = model(data.float().to(device))
if torch.isnan(torch.sum(output)):
print("output has nan:", output)
batch_loss = criterion(output.to(device), label.to(device)).to(device)
torch.cuda.empty_cache()
#print("\n After emptying cache")
#gpu_usage()
# Added distance correlation calculation between tagger output and jet pT
outSoftmax = f.softmax(output,dim=1)
signalIndex = args.hyper.num_classes - 1
outTag = outSoftmax[:,signalIndex]
normedweight = torch.ones_like(outTag)
# disco signal parameter
sgpVal = dcorrVar.to(device)
mask = sgpVal.gt(signalIndex-1).to(device)
maskedoutTag = torch.masked_select(outTag, mask)
maskedsgpVal = torch.masked_select(sgpVal, mask)
maskedweight = torch.masked_select(normedweight, mask)
batch_loss_dc = distance_corr(1,maskedoutTag.to(device), maskedsgpVal.to(device), maskedweight.to(device)).to(device)
lambdaDC = ldc
return l1*batch_loss, lambdaDC*batch_loss_dc
def plotEverything(trainData, trainNonTrainingInfo, kind="train"):
# ['njetsAK8', 'mT', 'METrHT_pt30', 'dEtaj12AK8', 'dRJ12AK8',
# 'dPhiMinjMETAK8', 'jPtAK8[0]', 'jPtAK8[1]', 'jEtaAK8[0]', 'jEtaAK8[1]',
# 'jPhiAK8[0]', 'jPhiAK8[1]', 'jEAK8[0]', 'jEAK8[1]', 'dPhijMETAK8[0]',
# 'dPhijMETAK8[1]', 'label']
labels = trainData["label"]
labDict = {}
labDict["qcd"] = labels == 0
labDict["ttj"] = labels == 1
labDict["svj"] = labels == 2
for inVar in list(trainData.columns):
varData = trainData[inVar]
plt.figure()
if inVar == "label":
h,b,d = plt.hist(varData[labDict["qcd"]],bins=np.arange(0,4,1),label="qcd",alpha=0.3)
else:
h,b,d = plt.hist(varData[labDict["qcd"]],bins=50,label="qcd",alpha=0.3)
for label,labCond in labDict.items():
if label == "qcd": continue
plt.hist(varData[labCond],bins=b,label=label,alpha=0.3)
plt.legend()
plt.xlabel(inVar)
plt.savefig(f"{inVar}_{kind}.png")
plt.figure()
varData = trainNonTrainingInfo["dcorrVar"]
h,b,d = plt.hist(varData[labDict["qcd"]],bins=50,label="qcd",alpha=0.3)
for label,labCond in labDict.items():
if label == "qcd": continue
plt.hist(varData[labCond],bins=b,label=label,alpha=0.3)
plt.legend()
plt.xlabel("met")
plt.savefig(f"dcorrVar_{kind}.png")
def main():
rng = np.random.RandomState(2022)
# parse arguments
parser = ArgumentParser(config_options=MagiConfigOptions(strict = True, default="configs/C1.py"),formatter_class=ArgumentDefaultsRawHelpFormatter)
parser.add_argument("--outf", type=str, default="logs", help='Name of folder to be used to store outputs')
parser.add_argument("--model", type=str, default=None, help="Existing model to continue training, if applicable")
parser.add_config_only(*c.config_schema)
parser.add_config_only(**c.config_defaults)
args = parser.parse_args()
if not os.path.isdir(args.outf):
os.mkdir(args.outf)
# Choose cpu or gpu
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
if device.type == 'cuda':
gpuIndex = torch.cuda.current_device()
print("Using GPU named: \"{}\"".format(torch.cuda.get_device_name(gpuIndex)))
#print('Memory Usage:')
#print('\tAllocated:', round(torch.cuda.memory_allocated(gpuIndex)/1024**3,1), 'GB')
#print('\tCached: ', round(torch.cuda.memory_reserved(gpuIndex)/1024**3,1), 'GB')
torch.manual_seed(args.hyper.rseed)
# Load dataset
print('Loading dataset ...')
ds = args.dataset
hyper = args.hyper
ft = args.features
tr = args.training
trainData, trainNonTrainingInfo, trainData_nonUniform, trainNonTrainingInfo_nonUniform, valData, valNonTrainingInfo, testData, testNonTrainingInfo = getDataset(ds.path, ds.signal, ds.background, ds.sample_fractions, ft.eventVariables, ft.jetVariables, ft.dcorrVar, tr.weights, ft.numOfJetsToKeep,ds.flatMET)
# sanity check: plotting input variables
# plotEverything(trainData, trainNonTrainingInfo, kind="train")
# plotEverything(valData, valNonTrainingInfo, kind="val")
train = RootDataset(trainData, trainNonTrainingInfo)
val = RootDataset(valData, valNonTrainingInfo)
loader_train = udata.DataLoader(dataset=train, batch_size=hyper.batchSize, num_workers=0, shuffle=True)
loader_val = udata.DataLoader(dataset=val, batch_size=hyper.batchSize, num_workers=0, shuffle=False)
# Build model
model = DNN(n_var=len(train[0]["data"]), n_layers=hyper.num_of_layers, n_nodes=hyper.num_of_nodes, n_outputs=hyper.num_classes, drop_out_p=hyper.dropout).to(device=device)
if (args.model == None):
#model.apply(init_weights)
print("Creating new model ")
args.model = 'net.pth'
else:
print("Loading model from " + modelLocation)
model.load_state_dict(torch.load(modelLocation))
model.eval()
modelLocation = "{}/{}".format(args.outf,args.model)
model = copy.deepcopy(model)
model = model.to(device)
model.eval()
modelInfo = []
modelInfo.append("Model contains {} trainable parameters.".format(count_parameters(model)))
with open('{}/modelInfo.txt'.format(args.outf), 'w') as f:
for line in modelInfo:
f.write("{}\n".format(line))
# Loss function
criterion = nn.CrossEntropyLoss()
criterion.to(device=device)
#Optimizer
optimizer = optim.Adam(model.parameters(), lr = hyper.learning_rate, weight_decay=1e-4)
scheduler = optim.lr_scheduler.ExponentialLR(optimizer=optimizer, gamma=0.95, last_epoch=-1, verbose=True)
# training and validation
# writer = SummaryWriter()
training_losses_tag = np.zeros(hyper.epochs)
training_losses_dc = np.zeros(hyper.epochs)
training_losses_total = np.zeros(hyper.epochs)
validation_losses_tag = np.zeros(hyper.epochs)
validation_losses_dc = np.zeros(hyper.epochs)
validation_losses_total = np.zeros(hyper.epochs)
for epoch in range(hyper.epochs):
print("Beginning epoch " + str(epoch))
# training
train_loss_tag = 0
train_loss_dc = 0
train_dc_val = 0
train_loss_total = 0
for i, data in tqdm(enumerate(loader_train), unit="batch", total=len(loader_train)):
model.train()
optimizer.zero_grad()
batch_loss_tag, batch_loss_dc = processBatch(args, device, data, model, criterion, [hyper.lambdaTag, hyper.lambdaReg, hyper.lambdaGR, hyper.lambdaDC])
batch_loss_total = batch_loss_tag + batch_loss_dc
batch_loss_total.backward()
optimizer.step()
train_loss_tag += batch_loss_tag.item()
train_loss_dc += batch_loss_dc.item()
#train_dc_val += dc_val.item()
train_loss_total += batch_loss_total.item()
# writer.add_scalar('training loss', train_loss_total / 1000, epoch * len(loader_train) + i)
train_loss_tag /= len(loader_train)
train_loss_dc /= len(loader_train)
#train_dc_val /= len(loader_train)
train_loss_total /= len(loader_train)
training_losses_tag[epoch] = train_loss_tag
training_losses_dc[epoch] = train_loss_dc
training_losses_total[epoch] = train_loss_total
if np.isnan(train_loss_tag):
print("nan in training")
break
print("t_tag: "+ str(train_loss_tag))
print("t_dc: "+ str(train_loss_dc))
#print("t_dc_val: "+ str(train_dc_val))
print("t_total: "+ str(train_loss_total))
# Set the model to evaluation mode, disabling dropout and using population
# statistics for batch normalization.
model.eval()
# validation
# Disable gradient computation and reduce memory consumption.
val_loss_tag = 0
val_loss_dc = 0
val_dc_val = 0
val_loss_total = 0
with torch.no_grad():
for i, data in enumerate(loader_val):
output_loss_tag, output_loss_dc = processBatch(args, device, data, model, criterion, [hyper.lambdaTag, hyper.lambdaReg, hyper.lambdaGR, hyper.lambdaDC])
output_loss_total = output_loss_tag + output_loss_dc
val_loss_tag += output_loss_tag.item()
val_loss_dc += output_loss_dc.item()
# val_dc_val += dc_val.item()
val_loss_total += output_loss_total.item()
val_loss_tag /= len(loader_val)
val_loss_dc /= len(loader_val)
#val_dc_val /= len(loader_val)
val_loss_total /= len(loader_val)
# scheduler.step()
#scheduler.step(torch.tensor([val_loss_total]))
validation_losses_tag[epoch] = val_loss_tag
validation_losses_dc[epoch] = val_loss_dc
validation_losses_total[epoch] = val_loss_total
if np.isnan(val_loss_tag):
print("nan in val")
break
print("v_tag: "+ str(val_loss_tag))
print("v_dc: "+ str(val_loss_dc))
#print("v_dc_val: "+ str(val_dc_val))
print("v_total: "+ str(val_loss_total))
# save the model
model.eval()
# torch.save(model.state_dict(), "{}/net_{}.pth".format(args.outf,epoch))
torch.cuda.empty_cache()
np.savez(args.outf + "/losses",training_losses_tag=training_losses_tag,validation_losses_tag=validation_losses_tag,training_losses_dc=training_losses_dc,
validation_losses_dc=validation_losses_dc,training_losses_total=training_losses_total,validation_losses_total=validation_losses_total)
# save the model
torch.save(model.state_dict(), modelLocation)
# writer.close()
# plot loss/epoch for training and validation sets
print("Making loss plot")
fig, ax = plt.subplots()
ax.plot(training_losses_tag, label='training_tag')
ax.plot(validation_losses_tag, label='validation_tag')
ax.plot(training_losses_total, label='training_total')
ax.plot(validation_losses_total, label='validation_total')
ax.set_xlabel("epoch")
ax.set_ylabel("Loss")
ax2 = ax.twinx()
ax2.plot(training_losses_dc, label='training_dc',linestyle="--")
ax2.plot(validation_losses_dc, label='validation_dc',linestyle="--")
ax2.set_ylabel("Disco Loss")
ax.legend(loc="upper right")
ax2.legend(loc="center right")
plt.savefig(args.outf + "/loss_plot.png")
parser.write_config(args, args.outf + "/config_out.py")
if __name__ == "__main__":
main()