-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathrun-scan.py
executable file
·546 lines (481 loc) · 23.8 KB
/
run-scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#!/usr/bin/env python3
import os
import re
import json
import time
import socket
import argparse
import statistics
import subprocess
import collections
import multiprocessing
# Make CUDA_VISIBLE_DEVICES order match to nvidia-smi
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = ""
# Number of events for each application
n_events_unit = 1000
n_blocks_per_stream = {
"fwtest": 1,
"cuda": {"": 100, "transfer": 100},
"cudadev": {"": 100, "transfer": 100},
"cudauvm": {"": 100, "transfer": 100},
"cudacompat": {"": 8},
"serial": {"": 8},
}
# 30 ev/s * 8 hours should the sufficent and fit into signed int for ~2k threads
background_events_per_thread = 30*3600*8
result_re = re.compile("Processed (?P<events>\d+) events in (?P<time>\S+) seconds, throughput (?P<throughput>\S+) events/s, CPU usage per thread: (?P<cpueff>\d+(.\d+)?)%")
Measurement = collections.namedtuple("Measurement", ["events", "time", "throughput", "cpueff"])
GPU = collections.namedtuple("GPU", ["id", "name", "driver_version"])
GPUStatus = collections.namedtuple("GPUStatus", ["utilization", "temperature", "power", "clock"])
BackgroundJob = collections.namedtuple("BackgroundJob", ["handle", "logfile", "cores"])
class Monitor:
def __init__(self, opts, cudaDevices=[]):
self._intervalSeconds = opts.monitorSeconds
self._monitorMemory = opts.monitorMemory
self._monitorClock = opts.monitorClock
self._monitorUtilization = opts.monitorUtilization
self._monitorCuda = opts.monitorCuda
self._timeStamp = []
self._dataProcess = []
self._dataClock = {x: [] for x in range(0, multiprocessing.cpu_count())}
self._dataCuda = {x: [] for x in cudaDevices}
def setIntervalSeconds(self, interval):
self._intervalSeconds = interval
def intervalSeconds(self):
return self._intervalSeconds
def snapshot(self, pid=None, cudaDevices=[]):
if self._intervalSeconds is None:
return
self._timeStamp.append(time.strftime("%y-%m-%d %H:%M:%S"))
if self._monitorMemory or self._monitorUtilization:
proc = dict()
if self._monitorMemory:
proc["rss"] = processRss(pid) if pid is not None else 0
if self._monitorUtilization:
proc["utilization"] = processUtilization(pid) if pid is not None else 0.0
self._dataProcess.append(proc)
if self._monitorClock:
clocks = processClock()
for key, lst in self._dataClock.items():
lst.append(dict(clock=clocks.get(key, -1.0)))
if self._monitorCuda:
for dev in cudaDevices:
data = {}
data.update(cudaDeviceStatus(dev)._asdict())
mem = cudaDeviceProcessMemory(dev, pid) if pid is not None else 0
data["proc_mem_use"] = mem
self._dataCuda[dev].append(data)
def toArrays(self):
data = {}
if self._intervalSeconds is not None:
data["time"] = self._timeStamp
if self._monitorMemory or self._monitorUtilization or self._monitorClock:
data["host"] = {}
if self._monitorMemory or self._monitorUtilization:
data["host"]["process"] = self._dataProcess
if self._monitorClock:
data["host"]["cpu"] = self._dataClock
if self._monitorCuda:
data["cuda"] = self._dataCuda
return data
def printMessage(*args):
print(time.strftime("%y-%m-%d %H:%M:%S"), *args)
def throughput(output, filename):
for line in output:
m = result_re.search(line)
if m:
printMessage(line.rstrip())
return Measurement(int(m.group("events")), float(m.group("time")), float(m.group("throughput")), float(m.group("cpueff")))
raise Exception("Did not find throughput from the log")
def partition_cores(cores, nth):
if nth >= len(cores):
return (cores, [])
return (cores[0:nth], cores[nth:])
def listCudaDevices():
try:
p = subprocess.Popen(["nvidia-smi", "--query-gpu=index,name,driver_version", "--format=csv,noheader,nounits"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
except FileNotFoundError:
return {}
output = p.communicate()[0]
ret = {}
for line in output.split("\n"):
if line:
s = line.split(",")
gpu = GPU(*[x.strip().rstrip() for x in s])
ret[gpu.id] = gpu
return ret
def cudaDeviceStatus(dev):
p = subprocess.Popen(["nvidia-smi", "--id="+dev, "--query-gpu=utilization.gpu,temperature.gpu,power.draw,clocks.sm", "--format=csv,noheader,nounits"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
output = p.communicate()[0]
s = output.rstrip().split(",")
def convert(s):
try:
return float(s)
except ValueError:
return s
return GPUStatus(*[convert(x.strip().rstrip()) for x in s])
def cudaDeviceProcessMemory(dev, pid):
"""In MB"""
p = subprocess.Popen(["nvidia-smi", "--id="+dev, "--query-compute-apps=pid,used_gpu_memory", "--format=csv,noheader,nounits"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True)
output = p.communicate()[0]
for line in output.split("\n"):
if line:
s = line.split(",")
if s[0].strip().rstrip() == str(pid):
return float(s[1].strip().rstrip())
return 0
def processRss(pid):
"""In MB"""
# from https://stackoverflow.com/a/48397534
with open("/proc/{}/status".format(pid)) as f:
content = f.read()
if not "VmRSS:" in content:
return 0
memusage = content.split('VmRSS:')[1].split('\n')[0][:-3]
return float(memusage.strip())/1024.0
def processClock():
"""In MHz"""
ret = {}
with open("/proc/cpuinfo") as f:
cpuId = -1
for line in f:
if "processor" in line:
cpuid = int(int(line.split(":")[1]))
elif "cpu MHz" in line:
ret[cpuid] = float(line.split(":")[1])
cpuid = -1
return ret
def processUtilization(pid):
p = subprocess.Popen(["ps", "-p", str(pid), "-o", "%cpu", "--no-header"], stdout=subprocess.PIPE, universal_newlines=True)
output = p.communicate()[0]
return float(output)
def _run(processUntil, nstr, cores_main, opts, logfilename, monitor, cudaDevices=[]):
nth = len(cores_main)
with open(logfilename, "w") as logfile:
taskset = []
nvprof = []
command = [opts.program] + processUntil + ["--numberOfStreams", str(nstr), "--numberOfThreads", str(nth)] + opts.args
if opts.taskset:
taskset = ["taskset", "-c", ",".join(cores_main)]
logfile.write(" ".join(taskset+command))
logfile.write("\n----\n")
logfile.flush()
if opts.dryRun:
print(" ".join(taskset+command))
return (0, 0)
env = None
if len(cudaDevices) > 0:
visibleDevices = ",".join(opts.cudaDevices)
logfile.write("export CUDA_DEVICE_ORDER=PCI_BUS_ID\n")
logfile.write("export CUDA_VISIBLE_DEVICES="+visibleDevices+"\n")
logfile.flush()
env = dict(os.environ, CUDA_VISIBLE_DEVICES=visibleDevices)
p = subprocess.Popen(taskset+command, stdout=logfile, stderr=subprocess.STDOUT, universal_newlines=True, env=env)
monitor.snapshot(pid=p.pid, cudaDevices=cudaDevices)
while True:
try:
p.wait(timeout=monitor.intervalSeconds())
monitor.snapshot(cudaDevices=cudaDevices)
except subprocess.TimeoutExpired:
monitor.snapshot(pid=p.pid, cudaDevices=cudaDevices)
continue
except KeyboardInterrupt:
try:
p.terminate()
except OSError:
pass
p.wait()
break
if p.returncode != 0:
raise Exception("Got return code %d, see output in the log file %s" % (p.returncode, logfilename))
with open(logfilename) as logfile:
return throughput(logfile, logfilename)
def runEvents(nev, *args, **kwargs):
return _run(["--maxEvents", str(nev)], *args, **kwargs)
def runMinutes(mins, *args, **kwargs):
return _run(["--runForMinutes", str(mins)], *args, **kwargs)
def launchBackground(opts, cores_bkg, logfilepattern):
if opts.fill <= 0:
return []
nth = len(cores_bkg)
if nth == 0:
return []
nev = background_events_per_thread * nth
taskset = []
exe = os.path.join(os.path.dirname(opts.program), "serial")
serials = []
nth_per_process = nth
if opts.bkgThreads > 0 and opts.bkgThreads < nth:
nth_per_process = opts.bkgThreads
nprocesses = nth // nth_per_process
if nth % nth_per_process != 0:
nprocesses += 1
for ibkg in range(0, nprocesses):
logfile = open(logfilepattern.format(ibkg), "w")
cores = cores_bkg[ibkg*nth_per_process:(ibkg+1)*nth_per_process]
nth_this = len(cores)
command = [exe, "--maxEvents", str(nev), "--numberOfThreads", str(nth_this)]
if opts.taskset:
taskset = ["taskset", "-c", ",".join(cores)]
if opts.bkgNice is not None:
taskset.extend(["nice", "-n", str(opts.bkgNice)])
logfile.write(" ".join(taskset+command))
logfile.write("\n----\n")
logfile.flush()
if opts.dryRun:
print(" ".join(taskset+command))
continue
serials.append(BackgroundJob(subprocess.Popen(taskset+command, stdout=logfile, stderr=subprocess.STDOUT, universal_newlines=True),
logfile, cores))
return serials
def getEventsPerStream(program, opts):
ret = opts.eventsPerStream
if ret is None and opts.runForMinutes < 0:
tmp = n_blocks_per_stream.get(os.path.basename(program), None)
if tmp is None:
raise Exception("No default number of event blocks for program %s, and --eventsPerStream was not given" % program)
if isinstance(tmp, dict):
if "--transfer" in opts.args:
eventBlocksPerStream = tmp["transfer"]
else:
eventBlocksPerStream = tmp[""]
else:
eventBlocksPerStream = tmp
return eventBlocksPerStream * n_events_unit
return ret
def main(opts):
ncores = multiprocessing.cpu_count()
if opts.fill > 0:
ncores = opts.fill
cudaDevices = listCudaDevices()
print("Found {} devices".format(len(cudaDevices)))
for i, d in cudaDevices.items():
print(" {} {} driver {}".format(i, d.name, d.driver_version))
if len(opts.tasksetCores) > 0:
cores = opts.tasksetCores[:]
else:
cores = [str(x) for x in range(0, ncores)]
maxThreads = len(cores)
if opts.maxThreads > 0:
maxThreads = min(maxThreads, opts.maxThreads)
nthreads = range(opts.minThreads,maxThreads+1)
if len(opts.numThreads) > 0:
nthreads = [x for x in opts.numThreads if x >= opts.minThreads and x <= maxThreads]
n_streams_threads = [(i, i) for i in nthreads]
if len(opts.numStreams) > 0:
n_streams_threads = [(s, t) for t in nthreads for s in opts.numStreams]
nev_per_stream = getEventsPerStream(opts.program, opts)
data = dict(
program=opts.program,
args=" ".join(opts.args),
results=[]
)
outputJson = opts.output+".json"
alreadyExists = set()
if not opts.overwrite and os.path.exists(outputJson):
with open(outputJson) as inp:
data = json.load(inp)
if not opts.append:
for res in data["results"]:
alreadyExists.add( (res["streams"], res["threads"]) )
hostname = socket.gethostname()
stop = False
for nstr, nth in n_streams_threads:
if nstr == 0:
nstr = nth
if (nstr, nth) in alreadyExists:
continue
(cores_main, cores_bkg) = partition_cores(cores, nth)
mins = -1
nev = -1
if opts.runForMinutes >= 0:
mins = opts.runForMinutes
def run(postfix, **kwargs): return runMinutes(mins, nstr, cores_main, opts, opts.output+postfix, **kwargs)
else:
if opts.maxStreamsToAddEvents > 0 and nstr > opts.maxStreamsToAddEvents:
nev = nev_per_stream * opts.maxStreamsToAddEvents
else:
nev = nev_per_stream*nstr
def run(postfix, **kwargs): return runEvents(nev, nstr, cores_main, opts, opts.output+postfix, **kwargs)
if opts.warmup:
printMessage("Warming up")
wmon = Monitor(opts)
wmon.setIntervalSeconds(None)
run("_warmup.txt", monitor=wmon, cudaDevices=opts.cudaDevices)
print()
opts.warmup = False
backgroundJobs = launchBackground(opts, cores_bkg, opts.output+"_log_nstr{}_nth{}_bkg".format(nstr, nth)+"{}.txt")
if len(backgroundJobs) > 0:
msg = "Background serial\n"
for job in backgroundJobs:
msg += " pid {}".format(job.handle.pid)
if opts.taskset:
msg +=", running on cores " + ",".join(job.cores)
msg += "\n"
printMessage(msg)
try:
msg = "Number of streams {} threads {}".format(nstr, nth)
if nev >= 0:
msg += " events {}".format(nev)
else:
msg += " minutes {}".format(mins)
if opts.taskset:
msg += ", running on cores " + ",".join(cores_main)
if len(opts.cudaDevices) > 0:
msg += ", running on devices " + ",".join(opts.cudaDevices)
printMessage(msg)
throughputs = []
for i in range(opts.repeat):
tryAgain = opts.tryAgain
while tryAgain > 0:
try:
monitor = Monitor(opts, cudaDevices=opts.cudaDevices)
measurement = run("_log_nstr{}_nth{}_n{}.txt".format(nstr, nth, i), monitor=monitor, cudaDevices=opts.cudaDevices)
break
except Exception as e:
tryAgain -= 1
if tryAgain == 0:
raise
print("Got exception (see below), trying again ({} times left)".format(tryAgain))
print("--------------------")
print(str(e))
print("--------------------")
if opts.dryRun:
continue
throughputs.append(measurement.throughput)
d = dict(
hostname=hostname,
threads=nth,
streams=nstr,
events=measurement.events,
throughput=measurement.throughput,
cpueff=measurement.cpueff,
)
if monitor.intervalSeconds() is not None:
d["monitor"]=monitor.toArrays()
if len(opts.cudaDevices) > 0:
d["cudaDevices"] = {
x: dict(name=cudaDevices[x].name, driver_version=cudaDevices[x].driver_version) for x in opts.cudaDevices
}
data["results"].append(d)
# Save results after each test
with open(outputJson, "w") as out:
json.dump(data, out, indent=2)
if opts.stopAfterWallTime > 0 and measurement.time > opts.stopAfterWallTime:
stop = True
break
finally:
if len(backgroundJobs) > 0:
printMessage("Run complete, terminating background serial jobs")
try:
for job in backgroundJobs:
job.handle.terminate()
except OSError:
pass
for job in backgroundJobs:
job.handle.wait()
job.logfile.close()
thr = 0
stdev = 0
if len(throughputs) > 0:
thr = statistics.mean(throughputs)
if len(throughputs) > 1:
stdev = statistics.stdev(throughputs)
printMessage("Number of streams {} threads {}, average throughput {} stdev {}".format(nstr, nth, thr, stdev))
print()
if stop:
print("Reached max wall time of %d s, stopping scan" % opts.stopAfterWallTime)
break
def addCommonArguments(parser):
output_group = parser.add_argument_group("JSON output arguments")
output_group.add_argument("-o", "--output", type=str, default="result",
help="Prefix of output JSON and log files. If the output JSON file exists, it will be updated (see also --overwrite) (default: 'result')")
output_group.add_argument("--overwrite", action="store_true",
help="Overwrite the output JSON instead of updating it")
output_group.add_argument("--append", action="store_true",
help="Append new (stream, threads) results insteads of ignoring already existing point")
monitor_group = parser.add_argument_group("Monitoring arguments",
description="These arguments can be used to enable various monitoring of the program being tested. The data is stored in the result JSON file.")
monitor_group.add_argument("--monitorSeconds", type=int, default=-1,
help="Store monitoring data with intervals of this many seconds (default -1 for disabled)")
monitor_group.add_argument("--monitorMemory", action="store_true",
help="Enable monitoring of host memory")
monitor_group.add_argument("--monitorClock", action="store_true",
help="Enable monitoring of CPU core clocks")
monitor_group.add_argument("--monitorUtilization", action="store_true",
help="Enable monitoring of CPU utilization with 'ps'")
monitor_group.add_argument("--monitorCuda", action="store_true",
help="Enable monitoring of CUDA devices (utilization, power, memory etc)")
parser.add_argument("--tryAgain", type=int, default=1,
help="In case of failure on a point, try again at most this many times (default: 1)")
parser.add_argument("--warmup", action="store_true",
help="Run the command once before starting the profiling")
parser.add_argument("--dryRun", action="store_true",
help="Print out commands, don't actually run anything")
def parseCommonArguments(parser):
opts = parser.parse_args()
if opts.monitorSeconds < 0:
opts.monitorSeconds = None
return opts
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="""Run a scan of a given test program.
Note that this program does not honor CUDA_VISIBLE_DEVICES, use --cudaDevices instead.
""")
parser.add_argument("program", type=str,
help="Path to the test program to run.")
addCommonArguments(parser)
scan_group = parser.add_argument_group("Scan arguments")
scan_group.add_argument("--repeat", type=int, default=1,
help="Repeat each point this many times (default: 1)")
scan_group.add_argument("--minThreads", type=int, default=1,
help="Minimum number of threads to use in the scan (default: 1)")
scan_group.add_argument("--maxThreads", type=int, default=-1,
help="Maximum number of threads to use in the scan (default: -1 for the number of cores)")
scan_group.add_argument("--numThreads", type=str, default="",
help="Comma separated list of numbers of threads to use in the scan (default: empty for all)")
scan_group.add_argument("--numStreams", type=str, default="",
help="Comma separated list of numbers of streams to use in the scan (default: empty for always the same as the number of threads). If both number of threads and number of streams have more than 1 element, a 2D scan is done with all the combinations")
scan_group.add_argument("--stopAfterWallTime", type=int, default=-1,
help="Stop running after the wall time of the job reaches this many in seconds (default: -1 for no limit)")
nevents_group = parser.add_argument_group("Setting number of events arguments")
nevents_group.add_argument("--eventsPerStream", type=int, default=None,
help="Number of events to be used per EDM stream (default: 400*4kev for cuda, others also hardcoded in the top of the script file)")
nevents_group.add_argument("--maxStreamsToAddEvents", type=int, default=-1,
help="Maximum number of streams to add events (default: -1 for no limit")
nevents_group.add_argument("--runForMinutes", type=int, default=-1,
help="Process the set of events until this many minutes has elapsed. Conflicts with --eventsPerStream and --maxStreamsToAddEvents. (default -1 for disabled)")
fill_group = parser.add_argument_group("Node filling and pinning arguments")
fill_group.add_argument("--taskset", action="store_true",
help="Use taskset to explicitly set the cores where to run on")
fill_group.add_argument("--tasksetCores", type=str, default="",
help="Comma-separated list of cores to be used for taskset in that order. Default (empty) is to use range(0, N(cores))")
fill_group.add_argument("--fill", type=int, default=-1,
help="Launch serial program in the background so that this many threads are always running. If given, this will also become the upper limit for the number of threads instead of the number of cores of the machine. (default: -1 to disable")
fill_group.add_argument("--bkgNice", type=int, default=None,
help="If given, use this 'nice' level for the background program")
fill_group.add_argument("--bkgThreads", type=int, default=-1,
help="If given, use this many threads/process for the background program(s). (default: -1 for one process with necessary number of threads)")
fill_group.add_argument("--cudaDevices", type=str, default="",
help="Comma-separeted list of CUDA devices (as in nvidia-smi) to use (default empty is to use all devices).")
parser.add_argument("args", nargs=argparse.REMAINDER)
opts = parseCommonArguments(parser)
if opts.minThreads <= 0:
parser.error("minThreads must be > 0, got %d" % opts.minThreads)
if opts.maxThreads <= 0 and opts.maxThreads != -1:
parser.error("maxThreads must be > 0 or -1, got %d" % opts.maxThreads)
if opts.numThreads != "":
opts.numThreads = [int(x) for x in opts.numThreads.split(",")]
if opts.numStreams != "":
opts.numStreams = [int(x) for x in opts.numStreams.split(",")]
if opts.tasksetCores != "":
opts.tasksetCores = opts.tasksetCores.split(",")
if len(opts.tasksetCores) > 0 and opts.fill != -1 and len(opts.tasksetCores) != opts.fill:
parser.error("When both --tasksetCores and --fill are given, --fill must match to the number of elements in --tasksetCores. No got --fill {} and {} elements in --tasksetCores {}".format(opts.fill, len(opts.tasksetCores)))
if opts.runForMinutes >= 0:
if opts.eventsPerStream is not None:
parser.error("--runForMinutes and --eventsPerStream can not be used together")
if opts.maxStreamsToAddEvents >= 0:
parser.error("--runForMinutes and --maxStreamsToAddEvents can not be used together")
opts.cudaDevices = opts.cudaDevices.split(",") if opts.cudaDevices != "" else []
main(opts)