-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathplot-histograms.py
executable file
·233 lines (204 loc) · 7.71 KB
/
plot-histograms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/env python3
import re
import sys
import copy
import glob
import collections
import matplotlib.pyplot as plt
import numpy as np
class Plot:
def __init__(self, xlabel, ylabel):
self._xlabel = xlabel
self._ylabel = ylabel
def xlabel(self):
return self._xlabel
def ylabel(self):
return self._ylabel
plots = dict(
cluster_n = Plot("Number of clusters", "Events"),
cluster_per_module_n = Plot("Number of clusters / module", "Modules"),
digi_adc = Plot("Digi ADC", "Digis"),
digi_n = Plot("Number of Digis", "Events"),
hit_charge = Plot("Cluster charge", "Hits"),
hit_gr = Plot("Hit global r (cm)", "Hits"),
hit_gx = Plot("Hit global x (cm)", "Hits"),
hit_gy = Plot("Hit global y (cm)", "Hits"),
hit_gz = Plot("Hit global z (cm)", "Hits"),
hit_lex = Plot("Hit local x error (cm)", "Hits"),
hit_ley = Plot("Hit local y error (cm)", "Hits"),
hit_lx = Plot("Hit local x (cm)", "Hits"),
hit_ly = Plot("Hit local y (cm)", "Hits"),
hit_n = Plot("Number of hits", "Events"),
hit_sizex = Plot("Cluster size in local x (pixels)", "Hits"),
hit_sizey = Plot("Cluster size in local y (pixels)", "Hits"),
module_n = Plot("Number of modules with data", "Events"),
track_chi2 = Plot("Track chi2/ndof", "Tracks"),
track_eta = Plot("Track eta", "Tracks"),
track_n = Plot("Number of tracks", "Events"),
track_nhits = Plot("Number of hits / track", "Tracks"),
track_phi = Plot("Track phi", "Tracks"),
track_pt = Plot("Track pT (GeV)", "Tracks"),
track_quality = Plot("Track quality", "Tracks"),
track_tip = Plot("Track transverse IP (cm)", "Tracks"),
track_tip_zoom = Plot("Track transverse IP (cm)", "Tracks"),
track_zip = Plot("Track longitudinal IP (cm)", "Tracks"),
track_zip_zoom = Plot("Track longitudinal IP (cm)", "Tracks"),
vertex_chi2 = Plot("Vertex chi2", "Vertices"),
vertex_n = Plot("Number of vertices", "Events"),
vertex_ndof = Plot("Vertex ndof", "Vertices"),
vertex_pt2 = Plot("Vertex sum(pT^2) (GeV^2)", "Vertices"),
vertex_z = Plot("Vertex z (cm)", "Vertices"),
)
class Histo:
def __init__(self, content):
self._name = content[0]
self._allBins = int(content[1])
self._nbins = int(self._allBins-2)
self._min = float(content[2])
self._max = float(content[3])
data = [int(x) for x in content[4:]]
self._underflow = data[0]
self._overflow = data[-1]
self._data = data[1:-1]
self._binWidth = (self._max-self._min) / self._nbins
def __str__(self):
ret = self._name
if self._underflow != 0:
ret += " underflow {}".format(self._underflow)
if self._overflow != 0:
ret += " overflow {}".format(self._overflow)
return ret
def name(self):
return self._name
def binWidth(self):
return self._binWidth
def bins(self):
return np.arange(0, self._nbins) * self._binWidth + self._min
#return np.arange(0, self._nbins) * self._binWidth
def binX(self, i):
return self._min + i*self._binWidth
def values(self):
return self._data
def ratioHisto(num, den):
ret = copy.copy(num)
def div(n, d):
if d == 0:
return 0
return n/d
ret._underflow = div(ret._underflow, den._underflow)
ret._overflow = div(ret._overflow, den._overflow)
for i, n in enumerate(num._data):
ret._data[i] = div(n, den._data[i])
return ret
def ratio(num, den):
x = []
y = []
for i, n in enumerate(num._data):
if den._data[i] != 0:
x.append(num.binX(i))
y.append(n/den._data[i])
return (x, y)
def fillAxBar(ax, histo, label, log):
#print(len(h.bins()), len(h.values()))
#print(h.bins())
#print(h.values())
ax.bar(histo.bins(), histo.values(), width=histo.binWidth(), label=label, align="edge", log=log, alpha=0.7)
def fillAxDot(ax, data, label, log):
ax.plot(data[0], data[1], ".", label=label)
def fillAxes(dataLabels, ax, fillAx=fillAxBar,
title=None, custom_plt=None, legend=True,
xlabel=None, ylabel=None,
xlim=None, ylim=None,
skipColors=0, skipColorIndices=[],
log=False):
if xlabel is None:
xlabel = ""
if ylabel is None:
ylabel = "Events"
ax.set(xlabel=xlabel, ylabel=ylabel)
if title is not None:
ax.set(title=title)
ax.grid()
for i in range(skipColors):
ax.plot([], [])
ind = 0
skip = skipColorIndices[:]
for data, label in dataLabels:
while len(skip) > 0 and ind == skip[0]:
ind += 1
ax.plot([], [])
del skip[0]
fillAx(ax, data, label, log)
ind += 1
if ylim is None:
ylim = dict(bottom=0)
if len(ylim) > 0:
ax.set_ylim(**ylim)
if xlim is not None:
ax.set_xlim(**xlim)
if legend:
ax.legend()
if custom_plt is not None:
custom_plt(ax)
def makePlot(histos, output=None, *args, **kwargs):
fig, ax = plt.subplots(1, 1)
fillAxes(histos, ax, *args, **kwargs)
#fig.show()
if output is not None:
fig.savefig(output+".png")
#fig.savefig(output+".pdf")
plt.close(fig)
def makePlots(histoData, labels, histoFilter=None, **kwargs):
for histoName, histos in histoData.items():
if histoFilter is not None and not histoFilter(histoName):
continue
histoLabels = []
for label in labels:
print("{} {}".format(label, str(histos[label])))
histoLabels.append( (histos[label], label) )
p = plots[histoName]
makePlot(histoLabels, output=histoName, xlabel=p.xlabel(), ylabel=p.ylabel(), **kwargs)
def makeRatioPlots(histoData, denomLabel, numLabels, histoFilter=None, **kwargs):
for histoName, histos in histoData.items():
if histoFilter is not None and not histoFilter(histoName):
continue
print("ratio for {}".format(histoName))
denom = histos[denomLabel]
ratioHistoLabels = [ (ratio(histos[num], denom), num+"/"+denomLabel) for num in numLabels]
p = plots[histoName]
makePlot(ratioHistoLabels, output=histoName+"_ratio", fillAx=fillAxDot, xlabel=p.xlabel(), ylabel=p.ylabel(), skipColors=1, **kwargs)
def makeManyRatioPlots(histoData, denomLabel, numLabels, **kwargs):
for histoName, histos in histoData.items():
print("ratio for {}".format(histoName))
denom = histos[denomLabel]
ratioHistoLabels = []
for numLabel, numFiles in numLabels.items():
x = []
y = []
for n in numFiles:
tx, ty = ratio(histos[n], denom)
x.extend(tx)
y.extend(ty)
#print(x, y)
ratioHistoLabels.append( ((x, y), numLabel+"/"+denomLabel) )
makePlot(ratioHistoLabels, output=histoName+"_ratiomany", fillAx=fillAxDot, **kwargs)
def readHistograms(files):
label_re = re.compile("histograms_(?P<label>.*)\.txt")
histos = collections.defaultdict(dict)
for fname in files:
m = label_re.search(fname)
label = m.group("label")
with open(fname) as f:
#print(fname)
for line in f:
histo = Histo(line.split(" "))
histos[histo.name()][label] = histo
#break
return histos
histoData = readHistograms(glob.glob("histograms_*.txt"))
makePlots(histoData, ["cuda", "kokkos_cuda"], log=True)
makeRatioPlots(histoData, "cuda", ["kokkos_cuda"], ylim=dict())
#makeManyRatioPlots(histoData, "cuda", dict(
# cuda = ["cuda_{}".format(i) for i in range(0,100)],
# kokkos_cuda = ["kokkos_cuda_{}".format(i) for i in range(0,100)],
#), ylim=dict(ymin=0.8, ymax=1.2))