-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathtrainer.py
447 lines (356 loc) · 15.7 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
"""
DMFont
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import copy
from pathlib import Path
import torch
import torch.nn as nn
import torch.nn.functional as F
import utils
from datasets import cyclize
from models.memory import comp_id_to_addr
from criterions import hinge_g_loss, hinge_d_loss
def has_bn(model):
for m in model.modules():
if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)):
return True
return False
def load_checkpoint(path, gen, disc, aux_clf, g_optim, d_optim, ac_optim):
ckpt = torch.load(path)
gen.load_state_dict(ckpt['generator'])
g_optim.load_state_dict(ckpt['optimizer'])
if disc is not None:
disc.load_state_dict(ckpt['discriminator'])
d_optim.load_state_dict(ckpt['d_optimizer'])
if aux_clf is not None:
aux_clf.load_state_dict(ckpt['aux_clf'])
ac_optim.load_state_dict(ckpt['ac_optimizer'])
# NOTE epoch is step
st_epoch = ckpt['epoch'] + 1
loss = ckpt['loss']
return st_epoch, loss
class Trainer:
def __init__(self, gen, disc, g_optim, d_optim, aux_clf, ac_optim,
writer, logger, evaluator, cfg):
self.gen = gen
self.gen_ema = copy.deepcopy(self.gen)
self.is_bn_gen = has_bn(self.gen)
self.disc = disc
self.g_optim = g_optim
self.d_optim = d_optim
self.aux_clf = aux_clf
self.ac_optim = ac_optim
self.writer = writer
self.logger = logger
self.evaluator = evaluator
self.cfg = cfg
self.step = 1
self.language = cfg['language']
self.g_losses = {}
self.d_losses = {}
self.ac_losses = {}
def clear_losses(self):
""" Integrate & clear loss dict """
# g losses
loss_dic = {k: v.item() for k, v in self.g_losses.items()}
loss_dic['g_total'] = sum(loss_dic.values())
# d losses
loss_dic.update({k: v.item() for k, v in self.d_losses.items()})
# ac losses
loss_dic.update({k: v.item() for k, v in self.ac_losses.items()})
self.g_losses = {}
self.d_losses = {}
self.ac_losses = {}
return loss_dic
def accum_g(self, decay=0.999):
par1 = dict(self.gen_ema.named_parameters())
par2 = dict(self.gen.named_parameters())
for k in par1.keys():
par1[k].data.mul_(decay).add_(1 - decay, par2[k].data)
def sync_g_ema(self, style_ids, style_comp_ids, style_imgs, trg_ids, trg_comp_ids):
""" update running stats for BN & update max singular value for SN """
org_train_mode = self.gen_ema.training
with torch.no_grad():
self.gen_ema.train()
self.gen_ema.encode_write(style_ids, style_comp_ids, style_imgs)
self.gen_ema.read_decode(trg_ids, trg_comp_ids)
self.gen_ema.train(org_train_mode)
def train(self, loader, st_step=1, val=None):
val = val or {}
self.gen.train()
self.disc.train()
# loss stats
losses = utils.AverageMeters("g_total", "pixel", "disc", "gen", "fm", "ac", "ac_gen")
# discriminator stats
discs = utils.AverageMeters("real", "fake",
"real_font", "real_char", "fake_font", "fake_char",
"real_acc", "fake_acc", "real_font_acc", "real_char_acc",
"fake_font_acc", "fake_char_acc")
# etc stats
stats = utils.AverageMeters("B_style", "B_target", "ac_acc", "ac_gen_acc")
self.step = st_step
self.clear_losses()
self.logger.info("Start training ...")
for (style_ids, style_char_ids, style_comp_ids, style_imgs,
trg_ids, trg_char_ids, trg_comp_ids, trg_imgs, *content_imgs) in cyclize(loader):
B = trg_imgs.size(0)
stats.updates({
"B_style": style_imgs.size(0),
"B_target": B
})
style_ids = style_ids.cuda()
# style_char_ids = style_char_ids.cuda()
style_comp_ids = style_comp_ids.cuda()
style_imgs = style_imgs.cuda()
trg_ids = trg_ids.cuda()
trg_char_ids = trg_char_ids.cuda()
trg_comp_ids = trg_comp_ids.cuda()
trg_imgs = trg_imgs.cuda()
# infer
comp_feats = self.gen.encode_write(style_ids, style_comp_ids, style_imgs)
out = self.gen.read_decode(trg_ids, trg_comp_ids)
# D loss
real, real_font, real_char, real_feats = self.disc(
trg_imgs, trg_ids, trg_char_ids, out_feats=True
)
fake, fake_font, fake_char = self.disc(out.detach(), trg_ids, trg_char_ids)
self.add_gan_d_loss(real, real_font, real_char, fake, fake_font, fake_char)
self.d_optim.zero_grad()
self.d_backward()
self.d_optim.step()
# G loss
fake, fake_font, fake_char, fake_feats = self.disc(
out, trg_ids, trg_char_ids, out_feats=True
)
self.add_gan_g_loss(real, real_font, real_char, fake, fake_font, fake_char)
# feature matching loss
self.add_fm_loss(real_feats, fake_feats)
# disc stats
racc = lambda x: (x > 0.).float().mean().item()
facc = lambda x: (x < 0.).float().mean().item()
discs.updates({
"real": real.mean().item(),
"fake": fake.mean().item(),
"real_font": real_font.mean().item(),
"real_char": real_char.mean().item(),
"fake_font": fake_font.mean().item(),
"fake_char": fake_char.mean().item(),
'real_acc': racc(real),
'fake_acc': facc(fake),
'real_font_acc': racc(real_font),
'real_char_acc': racc(real_char),
'fake_font_acc': facc(fake_font),
'fake_char_acc': facc(fake_char)
}, B)
# pixel loss
self.add_pixel_loss(out, trg_imgs)
self.g_optim.zero_grad()
# NOTE ac loss generates & leaves grads to G.
# so g_optim.zero_grad() should place in front of ac loss and
# g_backward() should follow ac loss.
if self.aux_clf is not None:
self.add_ac_losses_and_update_stats(
comp_feats, style_comp_ids, out, trg_comp_ids, stats
)
self.ac_optim.zero_grad()
self.ac_backward(retain_graph=True)
self.ac_optim.step()
self.g_backward()
self.g_optim.step()
loss_dic = self.clear_losses()
losses.updates(loss_dic, B)
# generator EMA
self.accum_g()
if self.is_bn_gen:
self.sync_g_ema(style_ids, style_comp_ids, style_imgs, trg_ids, trg_comp_ids)
# after step
if self.step % self.cfg['tb_freq'] == 0:
self.plot(losses, discs, stats)
if self.step % self.cfg['print_freq'] == 0:
self.log(losses, discs, stats)
losses.resets()
discs.resets()
stats.resets()
if self.step % self.cfg['val_freq'] == 0:
epoch = self.step / len(loader)
self.logger.info("Validation at Epoch = {:.3f}".format(epoch))
self.evaluator.merge_and_log_image('d1', out, trg_imgs, self.step)
self.evaluator.validation(self.gen, self.step)
# if non-BN generator, sync max singular value of spectral norm.
if not self.is_bn_gen:
self.sync_g_ema(style_ids, style_comp_ids, style_imgs, trg_ids, trg_comp_ids)
self.evaluator.validation(self.gen_ema, self.step, extra_tag='_EMA')
# save freq == val freq
self.save(
loss_dic['g_total'], self.cfg['save'],
self.cfg.get('save_freq', self.cfg['val_freq'])
)
if self.step >= self.cfg['max_iter']:
self.logger.info("Iteration finished.")
break
self.step += 1
def add_pixel_loss(self, out, target):
loss = F.l1_loss(out, target, reduction='mean') * self.cfg['pixel_w']
self.g_losses['pixel'] = loss
return loss
def add_gan_g_loss(self, real, real_font, real_char, fake, fake_font, fake_char):
if self.cfg['gan_w'] == 0.:
return 0.
g_loss = hinge_g_loss(real_font.detach(), fake_font) + \
hinge_g_loss(real_char.detach(), fake_char)
if self.disc.use_rx:
g_loss += hinge_g_loss(real.detach(), fake)
g_loss *= self.cfg['gan_w']
self.g_losses['gen'] = g_loss
return g_loss
def add_gan_d_loss(self, real, real_font, real_char, fake, fake_font, fake_char):
if self.cfg['gan_w'] == 0.:
return 0.
d_loss = hinge_d_loss(real_font, fake_font) + \
hinge_d_loss(real_char, fake_char)
if self.disc.use_rx:
d_loss += hinge_d_loss(real, fake)
d_loss *= self.cfg['gan_w']
self.d_losses['disc'] = d_loss
return d_loss
def add_fm_loss(self, real_feats, fake_feats):
if self.cfg['fm_w'] == 0.:
return 0.
fm_loss = 0.
for real_f, fake_f in zip(real_feats, fake_feats):
fm_loss += F.l1_loss(real_f.detach(), fake_f)
fm_loss = fm_loss / len(real_feats) * self.cfg['fm_w']
self.g_losses['fm'] = fm_loss
return fm_loss
def add_ac_losses_and_update_stats(self, comp_feats, style_comp_ids, generated,
trg_comp_ids, stats):
# 1. ac(enc(x)) loss
loss, acc = self.infer_ac(comp_feats, style_comp_ids)
self.ac_losses['ac'] = loss * self.cfg['ac_w']
stats.ac_acc.update(acc, style_comp_ids.numel())
# 2. ac(enc(fake)) loss
# Freeze second encoder to prevent cheating by encoder
with utils.temporary_freeze(self.gen.component_encoder):
feats = self.gen.component_encoder(generated)
gen_comp_feats = feats[-1]
loss, acc = self.infer_ac(gen_comp_feats, trg_comp_ids)
self.ac_losses['ac_gen'] = loss * self.cfg['ac_w']
stats.ac_gen_acc.update(acc, trg_comp_ids.numel())
def infer_ac(self, comp_feats, comp_ids):
""" Auxiliary classifier loss on style or output features """
comp_addrs = comp_id_to_addr(comp_ids, self.language)
comp_feats_flat = comp_feats.flatten(0, 1)
comp_addrs_flat = comp_addrs.flatten(0, 1)
aux_out = self.aux_clf(comp_feats_flat)
loss = F.cross_entropy(aux_out, comp_addrs_flat)
acc = utils.accuracy(aux_out, comp_addrs_flat)
return loss, acc
def d_backward(self):
with utils.temporary_freeze(self.gen):
d_loss = sum(self.d_losses.values())
d_loss.backward()
def g_backward(self):
with utils.temporary_freeze(self.disc):
g_loss = sum(self.g_losses.values())
g_loss.backward()
def ac_backward(self, retain_graph):
if self.aux_clf is None:
return
org_grads = utils.freeze(self.gen.memory.persistent_memory)
if 'ac' in self.ac_losses:
self.ac_losses['ac'].backward(retain_graph=retain_graph)
if 'ac_gen' in self.ac_losses:
with utils.temporary_freeze(self.aux_clf):
self.ac_losses['ac_gen'].backward(retain_graph=retain_graph)
utils.unfreeze(self.gen.memory.persistent_memory, org_grads)
def save(self, cur_loss, method, save_freq=None):
"""
Args:
method: all / last
all: save checkpoint by step
last: save checkpoint to 'last.pth'
all-last: save checkpoint by step per save_freq and
save checkpoint to 'last.pth' always
"""
if method not in ['all', 'last', 'all-last']:
return
step_save = False
last_save = False
if method == 'all' or (method == 'all-last' and self.step % save_freq == 0):
step_save = True
if method in ('last', 'all-last'):
last_save = True
assert step_save or last_save
save_dic = {
'generator': self.gen.state_dict(),
'generator_ema': self.gen_ema.state_dict(),
'discriminator': self.disc.state_dict(),
'd_optimizer': self.d_optim.state_dict(),
'optimizer': self.g_optim.state_dict(),
'epoch': self.step,
'loss': cur_loss
}
if self.aux_clf is not None:
save_dic['aux_clf'] = self.aux_clf.state_dict()
save_dic['ac_optimizer'] = self.ac_optim.state_dict()
ckpt_dir = Path("checkpoints", self.cfg['unique_name'])
step_ckpt_name = "{:06d}-{}.pth".format(self.step, self.cfg['name'])
last_ckpt_name = "last.pth"
step_ckpt_path = ckpt_dir / step_ckpt_name
last_ckpt_path = ckpt_dir / last_ckpt_name
log = ""
if step_save:
torch.save(save_dic, str(step_ckpt_path))
log = "Checkpoint is saved to {}".format(step_ckpt_path)
if last_save:
utils.rm(last_ckpt_path)
last_ckpt_path.symlink_to(step_ckpt_path.absolute())
log += " w/ {} symlink".format(last_ckpt_name)
if not step_save and last_save:
utils.rm(last_ckpt_path)
torch.save(save_dic, str(last_ckpt_path))
log = "Checkpoint is saved to {}".format(last_ckpt_path)
self.logger.info("{}\n".format(log))
def plot(self, losses, discs, stats):
tag_scalar_dic = {
'train/g_total_loss': losses.g_total.val,
'train/pixel_loss': losses.pixel.val,
'train/d_loss': losses.disc.val,
'train/g_loss': losses.gen.val,
'train/d_real_font': discs.real_font.val,
'train/d_real_char': discs.real_char.val,
'train/d_fake_font': discs.fake_font.val,
'train/d_fake_char': discs.fake_char.val,
'train/d_real_font_acc': discs.real_font_acc.val,
'train/d_real_char_acc': discs.real_char_acc.val,
'train/d_fake_font_acc': discs.fake_font_acc.val,
'train/d_fake_char_acc': discs.fake_char_acc.val
}
if self.disc.use_rx:
tag_scalar_dic.update({
'train/d_real': discs.real.val,
'train/d_fake': discs.fake.val,
'train/d_real_acc': discs.real_acc.val,
'train/d_fake_acc': discs.fake_acc.val
})
if self.cfg['fm_w'] > 0.:
tag_scalar_dic['train/feature_matching'] = losses.fm.val
if self.aux_clf is not None:
tag_scalar_dic.update({
'train/ac_loss': losses.ac.val,
'train/ac_acc': stats.ac_acc.val,
'train/ac_gen_loss': losses.ac_gen.val,
'train/ac_gen_acc': stats.ac_gen_acc.val
})
self.writer.add_scalars(tag_scalar_dic, self.step)
def log(self, losses, discs, stats):
self.logger.info(
" Step {step:7d}: L1 {L.pixel.avg:7.4f} D {L.disc.avg:7.3f} G {L.gen.avg:7.3f}"
" FM {L.fm.avg:7.3f} AC {S.ac_acc.avg:5.1%} AC_gen {S.ac_gen_acc.avg:5.1%}"
" R {D.real_acc.avg:7.3f} F {D.fake_acc.avg:7.3f}"
" R_font {D.real_font_acc.avg:7.3f} F_font {D.fake_font_acc.avg:7.3f}"
" R_char {D.real_char_acc.avg:7.3f} F_char {D.fake_char_acc.avg:7.3f}"
" B_stl {S.B_style.avg:5.1f} B_trg {S.B_target.avg:5.1f}"
.format(step=self.step, L=losses, D=discs, S=stats))