-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathssim.py
153 lines (121 loc) · 4.92 KB
/
ssim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from math import exp
import torch
import torch.nn.functional as F
###############################################################################
# SSIM and MS-SSIM
# from https://github.com/jorge-pessoa/pytorch-msssim
###############################################################################
def gaussian(window_size, sigma):
gauss = torch.Tensor(
[exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]
)
return gauss/gauss.sum()
def create_window(window_size, channel=1):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
return window
def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
# Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
if val_range is None:
if torch.max(img1) > 128:
max_val = 255
else:
max_val = 1
if torch.min(img1) < -0.5:
min_val = -1
else:
min_val = 0
L = max_val - min_val
else:
L = val_range
padd = 0
(_, channel, height, width) = img1.size()
if window is None:
real_size = min(window_size, height, width)
window = create_window(real_size, channel=channel).to(img1.device)
mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=padd, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=padd, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=padd, groups=channel) - mu1_mu2
C1 = (0.01 * L) ** 2
C2 = (0.03 * L) ** 2
v1 = 2.0 * sigma12 + C2
v2 = sigma1_sq + sigma2_sq + C2
cs = torch.mean(v1 / v2) # contrast sensitivity
ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
if size_average:
ret = ssim_map.mean()
else:
ret = ssim_map.mean(1).mean(1).mean(1)
if full:
return ret, cs
return ret
def msssim(img1, img2, weights=None, window_size=11, window=None, size_average=True,
val_range=None, normalize=False):
if weights is None:
weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(img1.device)
levels = weights.size(0)
mssim = []
mcs = []
for _ in range(levels):
sim, cs = ssim(
img1, img2, window_size=window_size, window=window, size_average=size_average,
full=True, val_range=val_range
)
mssim.append(sim)
mcs.append(cs)
img1 = F.avg_pool2d(img1, (2, 2))
img2 = F.avg_pool2d(img2, (2, 2))
mssim = torch.stack(mssim)
mcs = torch.stack(mcs)
# Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
if normalize:
mssim = (mssim + 1) / 2
mcs = (mcs + 1) / 2
pow1 = mcs ** weights
pow2 = mssim ** weights
# From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
output = torch.prod(pow1[:-1] * pow2[-1])
return output
# Classes to re-use window
class SSIM(torch.nn.Module):
def __init__(self, window_size=11, size_average=True, val_range=None, channel=1):
super(SSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.val_range = val_range
self.channel = channel
window = create_window(window_size, channel)
self.register_buffer('window', window)
def forward(self, img1, img2):
assert self.channel == img1.size(1)
return ssim(
img1, img2, window=self.window, window_size=self.window_size,
size_average=self.size_average, val_range=self.val_range
)
class MSSSIM(torch.nn.Module):
def __init__(self, weights=None, window_size=11, size_average=True, val_range=None, channel=1,
normalize=False):
super(MSSSIM, self).__init__()
self.window_size = window_size
self.size_average = size_average
self.val_range = val_range
self.channel = channel
self.normalize = normalize
if weights is None:
weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
self.register_buffer('weights', torch.as_tensor(weights))
window = create_window(window_size, channel)
self.register_buffer('window', window)
def forward(self, img1, img2):
assert img1.size(1) == self.channel
return msssim(
img1, img2, weights=self.weights,
window_size=self.window_size, window=self.window, size_average=self.size_average,
val_range=self.val_range, normalize=self.normalize
)