-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathinference.py
82 lines (60 loc) · 2.64 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
"""
DMFont
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
import torch
from torch.utils.data import DataLoader
from datasets import get_ma_val_dataset
from datasets.nonpaired_dataset import EncodeDataset, DecodeDataset
def infer(gen, loader):
outs = []
for style_ids, style_comp_ids, style_imgs, trg_ids, trg_comp_ids, content_imgs \
in loader:
style_ids = style_ids.cuda()
style_comp_ids = style_comp_ids.cuda()
style_imgs = style_imgs.cuda()
trg_ids = trg_ids.cuda()
trg_comp_ids = trg_comp_ids.cuda()
gen.encode_write(style_ids, style_comp_ids, style_imgs)
out = gen.read_decode(trg_ids, trg_comp_ids)
outs.append(out.detach().cpu())
return torch.cat(outs) # [B, 1, 128, 128]; B = #fonts * #chars
def get_val_loader(data, fonts, chars, style_avails, transform, content_font, language,
B=32, n_max_match=3, n_workers=2):
val_dset, collate_fn = get_ma_val_dataset(
data, fonts, chars, style_avails, n_max_match, transform=transform,
content_font=content_font, language=language
)
loader = DataLoader(val_dset, batch_size=B, shuffle=False,
num_workers=n_workers, collate_fn=collate_fn)
return loader
def infer_2stage(gen, encode_loader, decode_loader, reset_memory=True):
""" 2-stage infer; encode first, decode second """
# stage 1. encode
if reset_memory:
gen.reset_dynamic_memory()
for style_ids, style_comp_ids, style_imgs in encode_loader:
style_ids = style_ids.cuda()
style_comp_ids = style_comp_ids.cuda()
style_imgs = style_imgs.cuda()
gen.encode_write(style_ids, style_comp_ids, style_imgs, reset_dynamic_memory=False)
# stage 2. decode
outs = []
for trg_ids, trg_comp_ids in decode_loader:
trg_ids = trg_ids.cuda()
trg_comp_ids = trg_comp_ids.cuda()
out = gen.read_decode(trg_ids, trg_comp_ids)
outs.append(out.detach().cpu())
return torch.cat(outs)
def get_val_encode_loader(data, font_name, encode_chars, language, transform, B=32, num_workers=2,
style_id=0):
encode_dset = EncodeDataset(
font_name, encode_chars, data, language=language, transform=transform, style_id=style_id
)
loader = DataLoader(encode_dset, batch_size=B, shuffle=False, num_workers=num_workers)
return loader
def get_val_decode_loader(chars, language, B=32, num_workers=2, style_id=0):
decode_dset = DecodeDataset(chars, language=language, style_id=style_id)
loader = DataLoader(decode_dset, batch_size=B, shuffle=False, num_workers=num_workers)
return loader