-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathevaluator.py
502 lines (418 loc) · 17.8 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
"""
DMFont
Copyright (c) 2020-present NAVER Corp.
MIT license
"""
from itertools import chain
from pathlib import Path
import json
import argparse
import random
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import transforms
from tqdm import tqdm
from sconf import Config
import utils
from logger import Logger
from models import MACore
from datasets import uniform_sample
from datasets import kor_decompose as kor
from datasets import thai_decompose as thai
from inference import (
infer, get_val_loader,
infer_2stage, get_val_encode_loader, get_val_decode_loader
)
from ssim import SSIM, MSSSIM
def torch_eval(val_fn):
@torch.no_grad()
def decorated(self, gen, *args, **kwargs):
gen.eval()
ret = val_fn(self, gen, *args, **kwargs)
gen.train()
return ret
return decorated
class Evaluator:
"""DMFont evaluator.
The evaluator provides pixel-level evaluation and glyphs generation
from the reference style samples.
"""
def __init__(self, data, trn_avails, logger, writer, batch_size, transform,
content_font, language, meta, val_loaders, n_workers=2):
self.data = data
self.logger = logger
self.writer = writer
self.batch_size = batch_size
self.transform = transform
self.n_workers = n_workers
self.unify_resize_method = True
self.trn_avails = trn_avails
self.val_loaders = val_loaders
self.content_font = content_font
self.language = language
if self.language == 'kor':
self.n_comp_types = 3
elif self.language == 'thai':
self.n_comp_types = 4
else:
raise ValueError()
# setup cross-validation
self.SSIM = SSIM().cuda()
weights = [0.25, 0.3, 0.3, 0.15]
self.MSSSIM = MSSSIM(weights=weights).cuda()
n_batches = [len(loader) for loader in self.val_loaders.values()]
self.n_cv_batches = min(n_batches)
self.logger.info("# of cross-validation batches = {}".format(self.n_cv_batches))
# the number of chars/fonts for CV visualization
n_chars = 16
n_fonts = 16
seen_chars = uniform_sample(meta['train']['chars'], n_chars//2)
unseen_chars = uniform_sample(meta['valid']['chars'], n_chars//2)
unseen_fonts = uniform_sample(meta['valid']['fonts'], n_fonts)
self.cv_comparable_fonts = unseen_fonts
self.cv_comparable_chars = seen_chars + unseen_chars
allchars = meta['train']['chars'] + meta['valid']['chars']
self.cv_comparable_avails = {
font: allchars
for font in self.cv_comparable_fonts
}
def validation(self, gen, step, extra_tag=''):
self.comparable_validset_validation(gen, step, True, 'comparable_val'+extra_tag)
plot_dic = {}
for tag, loader in self.val_loaders.items():
tag = tag + extra_tag
l1, ssim, msssim = self.cross_validation(
gen, step, loader, tag, n_batches=self.n_cv_batches
)
plot_dic[f'val/{tag}/l1'] = l1
plot_dic[f'val/{tag}/ssim'] = ssim
plot_dic[f'val/{tag}/ms-ssim'] = msssim if not np.isnan(msssim) else 0.
self.writer.add_scalars(plot_dic, step)
return plot_dic
@torch_eval
def comparable_validset_validation(self, gen, step, compare_inputs=False, tag='comparable_val'):
"""Comparable validation on validation set from CV"""
comparable_grid = self.comparable_validation(
gen, self.cv_comparable_avails, self.cv_comparable_fonts, self.cv_comparable_chars,
n_max_match=1, compare_inputs=compare_inputs
)
self.writer.add_image(tag, comparable_grid, global_step=step)
@torch_eval
def comparable_validation(self, gen, style_avails, target_fonts, target_chars, n_max_match=3,
compare_inputs=False):
"""Compare horizontally for target fonts and chars"""
# infer
loader = get_val_loader(
self.data, target_fonts, target_chars, style_avails,
B=self.batch_size, n_max_match=n_max_match, transform=self.transform,
content_font=self.content_font, language=self.language, n_workers=self.n_workers
)
out = infer(gen, loader) # [B, 1, 128, 128]
# ref original chars
refs = self.get_charimages(target_fonts, target_chars)
compare_batches = [refs, out]
if compare_inputs:
compare_batches += self.get_inputimages(loader)
nrow = len(target_chars)
comparable_grid = utils.make_comparable_grid(*compare_batches, nrow=nrow)
return comparable_grid
@torch_eval
def cross_validation(self, gen, step, loader, tag, n_batches, n_log=64, save_dir=None):
"""Validation using splitted cross-validation set
Args:
n_log: # of images to log
save_dir: if given, images are saved to save_dir
"""
if save_dir:
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
outs = []
trgs = []
n_accum = 0
losses = utils.AverageMeters("l1", "ssim", "msssim")
for i, (style_ids, style_comp_ids, style_imgs,
trg_ids, trg_comp_ids, content_imgs, trg_imgs) in enumerate(loader):
if i == n_batches:
break
style_ids = style_ids.cuda()
style_comp_ids = style_comp_ids.cuda()
style_imgs = style_imgs.cuda()
trg_ids = trg_ids.cuda()
trg_comp_ids = trg_comp_ids.cuda()
trg_imgs = trg_imgs.cuda()
gen.encode_write(style_ids, style_comp_ids, style_imgs)
out = gen.read_decode(trg_ids, trg_comp_ids)
B = len(out)
# log images
if n_accum < n_log:
trgs.append(trg_imgs)
outs.append(out)
n_accum += B
if n_accum >= n_log:
# log results
outs = torch.cat(outs)[:n_log]
trgs = torch.cat(trgs)[:n_log]
self.merge_and_log_image(tag, outs, trgs, step)
l1, ssim, msssim = self.get_pixel_losses(out, trg_imgs, self.unify_resize_method)
losses.updates({
"l1": l1.item(),
"ssim": ssim.item(),
"msssim": msssim.item()
}, B)
# save images
if save_dir:
font_ids = trg_ids.detach().cpu().numpy()
images = out.detach().cpu() # [B, 1, 128, 128]
char_comp_ids = trg_comp_ids.detach().cpu().numpy() # [B, n_comp_types]
for font_id, image, comp_ids in zip(font_ids, images, char_comp_ids):
font_name = loader.dataset.fonts[font_id] # name.ttf
font_name = Path(font_name).stem # remove ext
(save_dir / font_name).mkdir(parents=True, exist_ok=True)
if self.language == 'kor':
char = kor.compose(*comp_ids)
elif self.language == 'thai':
char = thai.compose_ids(*comp_ids)
uni = "".join([f'{ord(each):04X}' for each in char])
path = save_dir / font_name / "{}_{}.png".format(font_name, uni)
utils.save_tensor_to_image(image, path)
self.logger.info(
" [Valid] {tag:30s} | Step {step:7d} L1 {L.l1.avg:7.4f} SSIM {L.ssim.avg:7.4f}"
" MSSSIM {L.msssim.avg:7.4f}"
.format(tag=tag, step=step, L=losses))
return losses.l1.avg, losses.ssim.avg, losses.msssim.avg
def get_pixel_losses(self, out, trg_imgs, unify):
"""
Args:
out: generated images
trg_imgs: target GT images
unify: if True is given, unify glyph size and resize method before evaluation.
This option give us the fair evaluation setting, which is used in the paper.
"""
def unify_resize_method(img):
# Unify various glyph size and resize method for fair evaluation
size = img.size(-1)
if size == 128:
transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize([64, 64]),
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
img = torch.stack([transform(_img) for _img in img.cpu()]).cuda()
img = F.interpolate(img, scale_factor=2.0, mode='bicubic', align_corners=True)
return img
if unify:
out = unify_resize_method(out)
trg_imgs = unify_resize_method(trg_imgs)
l1 = F.l1_loss(out, trg_imgs)
ssim = self.SSIM(out, trg_imgs)
msssim = self.MSSSIM(out, trg_imgs)
return l1, ssim, msssim
@torch_eval
def handwritten_validation_2stage(self, gen, step, fonts, style_chars, target_chars,
comparable=False, save_dir=None, tag='hw_validation_2stage'):
"""2-stage handwritten validation
Args:
fonts: [font_name1, font_name2, ...]
save_dir: if given, do not write image grid, instead save every image into save_dir
"""
if save_dir is not None:
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
outs = []
for font_name in tqdm(fonts):
encode_loader = get_val_encode_loader(
self.data, font_name, style_chars, self.language, self.transform
)
decode_loader = get_val_decode_loader(target_chars, self.language)
out = infer_2stage(gen, encode_loader, decode_loader)
outs.append(out)
if save_dir:
for char, glyph in zip(target_chars, out):
uni = "".join([f'{ord(each):04X}' for each in char])
path = save_dir / font_name / "{}_{}.png".format(font_name, uni)
path.parent.mkdir(parents=True, exist_ok=True)
utils.save_tensor_to_image(glyph, path)
if save_dir: # do not write grid
return
out = torch.cat(outs)
if comparable:
# ref original chars
refs = self.get_charimages(fonts, target_chars)
nrow = len(target_chars)
grid = utils.make_comparable_grid(refs, out, nrow=nrow)
else:
grid = utils.to_grid(out, 'torch', nrow=len(target_chars))
tag = tag + target_chars[:4]
self.writer.add_image(tag, grid, global_step=step)
def get_inputimages(self, val_loader):
# integrate style images
inputs = []
for style_ids, style_comp_ids, style_imgs, trg_ids, trg_comp_ids, content_imgs \
in val_loader:
inputs.append(style_imgs)
inputs = torch.cat(inputs)
shape = inputs.shape
inputs = inputs.view(shape[0]//self.n_comp_types, self.n_comp_types, *shape[1:])
batches = [inputs[:, i] for i in range(self.n_comp_types)]
return batches
def get_charimages(self, fonts, chars, empty_header=False, as_tensor=True):
""" get char images from self.data
Return:
2d list of charimages or 5d tensor:
[
[charimage1, charimage2, ...] (font1),
...
]
or
Tensor [n_fonts, n_chars, 1, 128, 128]
"""
empty_box = torch.ones(1, 128, 128)
charimages = [
[self.data.get(font_name, char, empty_box) for char in chars]
for font_name in fonts
]
if empty_header:
header = [empty_box for _ in chars]
charimages.insert(0, header)
if as_tensor:
charimages = torch.stack(list(chain.from_iterable(charimages)))
return charimages
def merge_and_log_image(self, name, out, target, step):
""" Merge out and target into 2-column grid and log it """
merge = utils.make_merged_grid([out, target], merge_dim=2)
self.writer.add_image(name, merge, global_step=step)
def eval_ckpt():
from train import (
setup_language_dependent, setup_data, setup_cv_dset_loader,
get_dset_loader
)
logger = Logger.get()
parser = argparse.ArgumentParser('MaHFG-eval')
parser.add_argument(
"name", help="name is used for directory name of the user-study generation results"
)
parser.add_argument("resume")
parser.add_argument("img_dir")
parser.add_argument("config_paths", nargs="+")
parser.add_argument("--show", action="store_true", default=False)
parser.add_argument(
"--mode", default="eval",
help="eval (default) / cv-save / user-study / user-study-save. "
"`eval` generates comparable grid and computes pixel-level CV scores. "
"`cv-save` generates and saves all target characters in CV. "
"`user-study` generates comparable grid for the ramdomly sampled target characters. "
"`user-study-save` generates and saves all target characters in user-study."
)
parser.add_argument("--deterministic", default=False, action="store_true")
parser.add_argument("--debug", default=False, action="store_true")
args, left_argv = parser.parse_known_args()
cfg = Config(*args.config_paths)
cfg.argv_update(left_argv)
torch.backends.cudnn.benchmark = True
cfg['data_dir'] = Path(cfg['data_dir'])
if args.show:
exit()
# seed
np.random.seed(cfg['seed'])
torch.manual_seed(cfg['seed'])
random.seed(cfg['seed'])
if args.deterministic:
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
cfg['n_workers'] = 0
logger.info("#" * 80)
logger.info("# Deterministic option is activated !")
logger.info("# Deterministic evaluator only ensure the deterministic cross-validation")
logger.info("#" * 80)
else:
torch.backends.cudnn.benchmark = True
if args.mode.startswith('mix'):
assert cfg['g_args']['style_enc']['use'], \
"Style mixing is only available with style encoder model"
#####################################
# Dataset
####################################
# setup language dependent values
content_font, n_comp_types, n_comps = setup_language_dependent(cfg)
# setup transform
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
# setup data
hdf5_data, meta = setup_data(cfg, transform)
# setup dataset
trn_dset, loader = get_dset_loader(
hdf5_data, meta['train']['fonts'], meta['train']['chars'], transform, True, cfg,
content_font=content_font
)
val_loaders = setup_cv_dset_loader(
hdf5_data, meta, transform, n_comp_types, content_font, cfg
)
#####################################
# Model
####################################
# setup generator only
g_kwargs = cfg.get('g_args', {})
gen = MACore(
1, cfg['C'], 1, **g_kwargs, n_comps=n_comps, n_comp_types=n_comp_types,
language=cfg['language']
)
gen.cuda()
ckpt = torch.load(args.resume)
logger.info("Use EMA generator as default")
gen.load_state_dict(ckpt['generator_ema'])
step = ckpt['epoch']
loss = ckpt['loss']
logger.info("Resumed checkpoint from {} (Step {}, Loss {:7.3f})".format(
args.resume, step, loss))
writer = utils.DiskWriter(args.img_dir, 0.6)
evaluator = Evaluator(
hdf5_data, trn_dset.avails, logger, writer, cfg['batch_size'],
content_font=content_font, transform=transform, language=cfg['language'],
val_loaders=val_loaders, meta=meta
)
evaluator.n_cv_batches = -1
logger.info("Update n_cv_batches = -1 to evaluate about full data")
if args.debug:
evaluator.n_cv_batches = 10
logger.info("!!! DEBUG MODE: n_cv_batches = 10 !!!")
if args.mode == 'eval':
logger.info("Start validation ...")
dic = evaluator.validation(gen, step)
logger.info("Validation is done. Result images are saved to {}".format(args.img_dir))
elif args.mode.startswith('user-study'):
meta = json.load(open('meta/kor-unrefined.json'))
target_chars = meta['target_chars']
style_chars = meta['style_chars']
fonts = meta['fonts']
if args.mode == 'user-study':
sampled_target_chars = uniform_sample(target_chars, 20)
logger.info("Start generation kor-unrefined ...")
logger.info("Sampled chars = {}".format(sampled_target_chars))
evaluator.handwritten_validation_2stage(
gen, step, fonts, style_chars, sampled_target_chars,
comparable=True, tag='userstudy-{}'.format(args.name)
)
elif args.mode == 'user-study-save':
logger.info("Start generation & saving kor-unrefined ...")
save_dir = Path(args.img_dir) / "{}-{}".format(args.name, step)
evaluator.handwritten_validation_2stage(
gen, step, fonts, style_chars, target_chars,
comparable=True, save_dir=save_dir
)
logger.info("Validation is done. Result images are saved to {}".format(args.img_dir))
elif args.mode == 'cv-save':
save_dir = Path(args.img_dir) / "cv_images_{}".format(step)
logger.info("Save CV results to {} ...".format(save_dir))
utils.rm(save_dir)
for tag, loader in val_loaders.items():
l1, ssim, msssim = evaluator.cross_validation(
gen, step, loader, tag, n_batches=evaluator.n_cv_batches, save_dir=(save_dir / tag)
)
else:
raise ValueError(args.mode)
if __name__ == "__main__":
eval_ckpt()