-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathhook_utils.py
57 lines (48 loc) · 2.09 KB
/
hook_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# coding=utf8
# ==============================================================================
# Copyright 2020-present NAVER Corp.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
try:
from functions import model_fns
except:
from functions import *
from utils import log_utils
class WarmStartHook(tf.train.SessionRunHook):
def __init__(self, checkpoint_path):
self.checkpoint_path = checkpoint_path
self.initialized = False
self.var_list_warm_start = []
self.saver = None
def begin(self):
var_list_all = tf.contrib.framework.get_trainable_variables()
for v in var_list_all:
# Dense layers in se_block is included in warm-start variables.
if 'dense' in v.name and not 'se_block' in v.name:
continue
else:
self.var_list_warm_start.append(v)
if self.checkpoint_path is not None and tf.gfile.IsDirectory(self.checkpoint_path):
self.checkpoint_path = tf.train.latest_checkpoint(self.checkpoint_path)
self.saver = tf.train.Saver(self.var_list_warm_start)
def after_create_session(self, session, coord=None):
tf.logging.info('Session created.')
if self.checkpoint_path and session.run(tf.train.get_or_create_global_step()) == 0:
log_utils.log_var_list_by_line(self.var_list_warm_start, 'var_list_warm_start')
tf.logging.info('Fine-tuning from %s' % self.checkpoint_path)
self.saver.restore(session, self.checkpoint_path)