-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathposcode.c
859 lines (786 loc) · 24.7 KB
/
poscode.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
/*-
* Copyright (c) 2016--2017 Robert Clausecker. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <assert.h>
#include "dobutsutable.h"
static void mirror_board(struct position *);
static void turn_board(struct position *);
static void normalize_position(struct position *);
static unsigned encode_ownership(const struct position *);
static void encode_pieces(poscode *, struct position *);
static void place_pieces(struct position *, unsigned, unsigned, unsigned);
static void assign_ownership(struct position *, unsigned);
/*
* Encode a position structure into a tablebase index (poscode). It is
* assumed that p encodes a valid position.
*/
extern void
encode_position(poscode *pc, const struct position *pos)
{
struct position p = *pos;
normalize_position(&p);
pc->ownership = encode_ownership(&p);
encode_pieces(pc, &p);
assert(has_valid_ownership(*pc));
}
/*
* Decode a tablebase index (poscode) into a position structure. It is
* assumed that pc is the output of encode_position() for a valid
* position.
*/
extern void
decode_poscode(struct position *pos, const poscode pc)
{
place_pieces(pos, pc.cohort, pc.lionpos, pc.map);
assign_ownership(pos, pc.ownership);
populate_map(pos);
}
/*
* Vertically mirror p along the B file. Do not update p->map.
*/
static void
mirror_board(struct position *p)
{
size_t i;
static const unsigned char flipped_board[] = {
[ 0] = 2,
[ 1] = 1,
[ 2] = 0,
[ 3] = 5,
[ 4] = 4,
[ 5] = 3,
[ 6] = 8,
[ 7] = 7,
[ 8] = 6,
[ 9] = 11,
[10] = 10,
[11] = 9,
[IN_HAND] = IN_HAND,
[GOTE_PIECE | 0] = GOTE_PIECE | 2,
[GOTE_PIECE | 1] = GOTE_PIECE | 1,
[GOTE_PIECE | 2] = GOTE_PIECE | 0,
[GOTE_PIECE | 3] = GOTE_PIECE | 5,
[GOTE_PIECE | 4] = GOTE_PIECE | 4,
[GOTE_PIECE | 5] = GOTE_PIECE | 3,
[GOTE_PIECE | 6] = GOTE_PIECE | 8,
[GOTE_PIECE | 7] = GOTE_PIECE | 7,
[GOTE_PIECE | 8] = GOTE_PIECE | 6,
[GOTE_PIECE | 9] = GOTE_PIECE | 11,
[GOTE_PIECE |10] = GOTE_PIECE | 10,
[GOTE_PIECE |11] = GOTE_PIECE | 9,
[GOTE_PIECE |IN_HAND] = GOTE_PIECE | IN_HAND,
};
for (i = 0; i < PIECE_COUNT; i++)
p->pieces[i] = flipped_board[p->pieces[i]];
}
/*
* Turn the board 180 degrees, exchanging Sente and Gote. Do not update
* p->map.
*/
static void
turn_board(struct position *p)
{
size_t i;
unsigned char tmp;
static unsigned char turned_board[] = {
[ 0] = GOTE_PIECE | 11,
[ 1] = GOTE_PIECE | 10,
[ 2] = GOTE_PIECE | 9,
[ 3] = GOTE_PIECE | 8,
[ 4] = GOTE_PIECE | 7,
[ 5] = GOTE_PIECE | 6,
[ 6] = GOTE_PIECE | 5,
[ 7] = GOTE_PIECE | 4,
[ 8] = GOTE_PIECE | 3,
[ 9] = GOTE_PIECE | 2,
[10] = GOTE_PIECE | 1,
[11] = GOTE_PIECE | 0,
[IN_HAND] = GOTE_PIECE | IN_HAND,
[GOTE_PIECE | 0] = 11,
[GOTE_PIECE | 1] = 10,
[GOTE_PIECE | 2] = 9,
[GOTE_PIECE | 3] = 8,
[GOTE_PIECE | 4] = 7,
[GOTE_PIECE | 5] = 6,
[GOTE_PIECE | 6] = 5,
[GOTE_PIECE | 7] = 4,
[GOTE_PIECE | 8] = 3,
[GOTE_PIECE | 9] = 2,
[GOTE_PIECE | 10] = 1,
[GOTE_PIECE | 11] = 0,
[GOTE_PIECE | IN_HAND] = IN_HAND,
};
for (i = 0; i < PIECE_COUNT; i++)
p->pieces[i] = turned_board[p->pieces[i]];
/* exchange lions */
tmp = p->pieces[LION_S];
p->pieces[LION_S] = p->pieces[LION_G];
p->pieces[LION_G] = tmp;
null_move(p);
}
/*
* Normalize p, that means:
* - if it's Gote to move, turn the board 180 degrees.
* - if the Sente lion is on the right board-half, flip the board
* along the center file
*/
static void
normalize_position(struct position *p)
{
if (gote_moves(p))
turn_board(p);
if (piece_in(00444, p->pieces[LION_S])
|| (piece_in(02222, p->pieces[LION_S]) && piece_in(01111 << GOTE_PIECE, p->pieces[LION_G])))
mirror_board(p);
}
/*
* Encode who owns what piece into a bitmap between 0 and 64.
*/
static unsigned
encode_ownership(const struct position *p)
{
unsigned result = 0;
if (gote_owns(p->pieces[CHCK_S]))
result |= 1 << 0;
if (gote_owns(p->pieces[CHCK_G]))
result |= 1 << 1;
if (gote_owns(p->pieces[GIRA_S]))
result |= 1 << 2;
if (gote_owns(p->pieces[GIRA_G]))
result |= 1 << 3;
if (gote_owns(p->pieces[ELPH_S]))
result |= 1 << 4;
if (gote_owns(p->pieces[ELPH_G]))
result |= 1 << 5;
return (result);
}
/*
* Decode who owns what piece and assign the result to the pieces in p.
*/
static void
assign_ownership(struct position *p, unsigned os)
{
if (os & 1 << 0)
p->pieces[CHCK_S] |= GOTE_PIECE;
if (os & 1 << 1)
p->pieces[CHCK_G] |= GOTE_PIECE;
if (os & 1 << 2)
p->pieces[GIRA_S] |= GOTE_PIECE;
if (os & 1 << 3)
p->pieces[GIRA_G] |= GOTE_PIECE;
if (os & 1 << 4)
p->pieces[ELPH_S] |= GOTE_PIECE;
if (os & 1 << 5)
p->pieces[ELPH_G] |= GOTE_PIECE;
p->pieces[LION_G] |= GOTE_PIECE;
}
/*
* After encoding the ownership information, the two pieces of each
* kind may be swapped for encoding. This table contains swapped
* encoding bits for each piece pair such that one can, after preparing
* a suitable mask, simply write
*
* ownership ^= mask & owner_flip[ownership];
*
* to flip the onwership of those piece pairs mentioned in mask. The
* table prom_flip contains a map with the promotion bits for Sente
* and Gote chicks flipped.
*/
static const unsigned char owner_flip[64] = {
0x00, 0x03, 0x03, 0x00, 0x0c, 0x0f, 0x0f, 0x0c,
0x0c, 0x0f, 0x0f, 0x0c, 0x00, 0x03, 0x03, 0x00,
0x30, 0x33, 0x33, 0x30, 0x3c, 0x3f, 0x3f, 0x3c,
0x3c, 0x3f, 0x3f, 0x3c, 0x30, 0x33, 0x33, 0x30,
0x30, 0x33, 0x33, 0x30, 0x3c, 0x3f, 0x3f, 0x3c,
0x3c, 0x3f, 0x3f, 0x3c, 0x30, 0x33, 0x33, 0x30,
0x00, 0x03, 0x03, 0x00, 0x0c, 0x0f, 0x0f, 0x0c,
0x0c, 0x0f, 0x0f, 0x0c, 0x00, 0x03, 0x03, 0x00,
}, prom_flip[4] = { 0, 2, 1, 3 };
/*
* A map from bits indicating which pieces are on the board to cohort
* numbers. To cut down the number of cohorts, it is assumed that if
* the _G piece is on the board, then the _S piece is on the board, too.
* Entries not corresponding to any cohort are marked -1 (0xff).
*/
static const unsigned char cohort_map[256] = {
/* no chicken promoted */
0, 1, -1, 2, 3, 4, -1, 5, -1, -1, -1, -1, 6, 7, -1, 8,
9, 10, -1, 11, 12, 13, -1, 14, -1, -1, -1, -1, 15, 16, -1, 17,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
18, 19, -1, 20, 21, 22, -1, 23, -1, -1, -1, -1, 24, 25, -1, 26,
/* CHCK_S promoted */
-1, 27, -1, 28, -1, 29, -1, 30, -1, -1, -1, -1, -1, 31, -1, 32,
-1, 33, -1, 34, -1, 35, -1, 36, -1, -1, -1, -1, -1, 37, -1, 38,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, 39, -1, 40, -1, 41, -1, 42, -1, -1, -1, -1, -1, 43, -1, 44,
/* CHCK_G promoted */
-1, -1, -1, 45, -1, -1, -1, 46, -1, -1, -1, -1, -1, -1, -1, 47,
-1, -1, -1, 48, -1, -1, -1, 49, -1, -1, -1, -1, -1, -1, -1, 50,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 51, -1, -1, -1, 52, -1, -1, -1, -1, -1, -1, -1, 53,
/* both chicks promoted */
-1, -1, -1, 54, -1, -1, -1, 55, -1, -1, -1, -1, -1, -1, -1, 56,
-1, -1, -1, 57, -1, -1, -1, 58, -1, -1, -1, -1, -1, -1, -1, 59,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 60, -1, -1, -1, 61, -1, -1, -1, -1, -1, -1, -1, 62,
};
/*
* See dobutsutable.h for documentation.
*/
const struct cohort_info cohort_info[COHORT_COUNT] = {
0, 0, 0, 0, 1, 1, 1, 0,
1, 0, 0, 0, 10, 1, 1, 0,
2, 0, 0, 0, 45, 1, 1, 0,
0, 1, 0, 0, 1, 10, 1, 0,
1, 1, 0, 0, 10, 9, 1, 0,
2, 1, 0, 0, 45, 8, 1, 0,
0, 2, 0, 0, 1, 45, 1, 0,
1, 2, 0, 0, 10, 36, 1, 0,
2, 2, 0, 0, 45, 28, 1, 0,
0, 0, 1, 0, 1, 1, 10, 0,
1, 0, 1, 0, 10, 1, 9, 0,
2, 0, 1, 0, 45, 1, 8, 0,
0, 1, 1, 0, 1, 10, 9, 0,
1, 1, 1, 0, 10, 9, 8, 0,
2, 1, 1, 0, 45, 8, 7, 0,
0, 2, 1, 0, 1, 45, 8, 0,
1, 2, 1, 0, 10, 36, 7, 0,
2, 2, 1, 0, 45, 28, 6, 0,
0, 0, 2, 0, 1, 1, 45, 0,
1, 0, 2, 0, 10, 1, 36, 0,
2, 0, 2, 0, 45, 1, 28, 0,
0, 1, 2, 0, 1, 10, 36, 0,
1, 1, 2, 0, 10, 9, 28, 0,
2, 1, 2, 0, 45, 8, 21, 0,
0, 2, 2, 0, 1, 45, 28, 0,
1, 2, 2, 0, 10, 36, 21, 0,
2, 2, 2, 0, 45, 28, 15, 0,
1, 0, 0, 1, 10, 1, 1, 0,
2, 0, 0, 1, 45, 1, 1, 0,
1, 1, 0, 1, 10, 9, 1, 0,
2, 1, 0, 1, 45, 8, 1, 0,
1, 2, 0, 1, 10, 36, 1, 0,
2, 2, 0, 1, 45, 28, 1, 0,
1, 0, 1, 1, 10, 1, 9, 0,
2, 0, 1, 1, 45, 1, 8, 0,
1, 1, 1, 1, 10, 9, 8, 0,
2, 1, 1, 1, 45, 8, 7, 0,
1, 2, 1, 1, 10, 36, 7, 0,
2, 2, 1, 1, 45, 28, 6, 0,
1, 0, 2, 1, 10, 1, 36, 0,
2, 0, 2, 1, 45, 1, 28, 0,
1, 1, 2, 1, 10, 9, 28, 0,
2, 1, 2, 1, 45, 8, 21, 0,
1, 2, 2, 1, 10, 36, 21, 0,
2, 2, 2, 1, 45, 28, 15, 0,
2, 0, 0, 2, 45, 1, 1, 0,
2, 1, 0, 2, 45, 8, 1, 0,
2, 2, 0, 2, 45, 28, 1, 0,
2, 0, 1, 2, 45, 1, 8, 0,
2, 1, 1, 2, 45, 8, 7, 0,
2, 2, 1, 2, 45, 28, 6, 0,
2, 0, 2, 2, 45, 1, 28, 0,
2, 1, 2, 2, 45, 8, 21, 0,
2, 2, 2, 2, 45, 28, 15, 0,
2, 0, 0, 3, 45, 1, 1, 0,
2, 1, 0, 3, 45, 8, 1, 0,
2, 2, 0, 3, 45, 28, 1, 0,
2, 0, 1, 3, 45, 1, 8, 0,
2, 1, 1, 3, 45, 8, 7, 0,
2, 2, 1, 3, 45, 28, 6, 0,
2, 0, 2, 3, 45, 1, 28, 0,
2, 1, 2, 3, 45, 8, 21, 0,
2, 2, 2, 3, 45, 28, 15, 0,
};
/* dito */
const struct cohort_size cohort_size[COHORT_COUNT] = {
0, 1,
21, 10,
231, 45,
1176, 10,
1386, 90,
3276, 360,
10836, 45,
11781, 360,
19341, 1260,
45801, 10,
46011, 90,
47901, 360,
55461, 90,
57351, 720,
72471, 2520,
125391, 360,
132951, 2520,
185871, 7560,
344631, 45,
345576, 360,
353136, 1260,
379596, 360,
387156, 2520,
440076, 7560,
598836, 1260,
625296, 7560,
784056, 18900,
1180956, 10,
1181166, 45,
1182111, 90,
1184001, 360,
1191561, 360,
1199121, 1260,
1225581, 90,
1227471, 360,
1235031, 720,
1250151, 2520,
1303071, 2520,
1355991, 7560,
1514751, 360,
1522311, 1260,
1548771, 2520,
1601691, 7560,
1760451, 7560,
1919211, 18900,
2316111, 45,
2317056, 360,
2324616, 1260,
2351076, 360,
2358636, 2520,
2411556, 7560,
2570316, 1260,
2596776, 7560,
2755536, 18900,
3152436, 45,
3153381, 360,
3160941, 1260,
3187401, 360,
3194961, 2520,
3247881, 7560,
3406641, 1260,
3433101, 7560,
3591861, 18900,
};
/* dito */
const unsigned long long valid_ownership_map[COHORT_COUNT] = {
0xb0bb0000b0bbb0bbULL,
0xf0ff0000f0fff0ffULL,
0xf0ff0000f0fff0ffULL,
0xbbbb0000bbbbbbbbULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xbbbb0000bbbbbbbbULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xb0bbb0bbb0bbb0bbULL,
0xf0fff0fff0fff0ffULL,
0xf0fff0fff0fff0ffULL,
0xbbbbbbbbbbbbbbbbULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xbbbbbbbbbbbbbbbbULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xb0bbb0bbb0bbb0bbULL,
0xf0fff0fff0fff0ffULL,
0xf0fff0fff0fff0ffULL,
0xbbbbbbbbbbbbbbbbULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xbbbbbbbbbbbbbbbbULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0ff0000f0fff0ffULL,
0xf0ff0000f0fff0ffULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xf0fff0fff0fff0ffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0fff0fff0fff0ffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0ff0000f0fff0ffULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0ff0000f0fff0ffULL,
0xffff0000ffffffffULL,
0xffff0000ffffffffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
0xf0fff0fff0fff0ffULL,
0xffffffffffffffffULL,
0xffffffffffffffffULL,
};
/* dito */
/* generated with the following J expression: */
/* 8 8 $ /: ; I.&.> 3 (>: ; <) +/"1 (6 # 2) #: i. 64 */
const unsigned char ownership_map[OWNERSHIP_TOTAL_COUNT] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 42,
15, 16, 17, 18, 19, 20, 21, 43,
22, 23, 24, 44, 25, 45, 46, 47,
26, 27, 28, 29, 30, 31, 32, 48,
33, 34, 35, 49, 36, 50, 51, 52,
37, 38, 39, 53, 40, 54, 55, 56,
41, 57, 58, 59, 60, 61, 62, 63,
};
/*
* The sente lion has five squares to be on: If the lion is on A, he has
* already won, so this can't happen. If he's on B, we can mirror the
* board. When he's on C, there is no way to place the Gote lion
* without it being adjacent to the Sente lion so this isn't possible.
*
* +---+
* |AAA|
* |BCX|
* |BXX|
* |BXX|
* +---+
*
* The Gote lion has up to seven squares. When he's in the opponents
* promotion zone A he is either in check (in which case the position is
* invalid) or has already won. When he's on B, we can mirror the
* board. When he's on C, he is in check by Sente which makes the
* position invalid. This leaves 7 + 4 + 5 + 2 + 3 = 21
* positions for the lions:
*
* +---+ +---+ +---+ +---+ +---+
* |XXX| |XXB| |XXX| |XXB| |XCC|
* |XXX| |XXB| |XCC| |CCB| |XCL|
* |XCC| |CCB| |XCL| |CLB| |XCC|
* |AAL| |ALB| |AAA| |AAB| |AAA|
* +---+ +---+ +---+ +---+ +---+
*
* We also assign codes to lion positions with adjacent lions so we can
* encode every possible position. However, we do not store these
* positions in the table base.
*
* This table takes the squares of both lions and returns a number
* representing this position. Pairs of lion positions that aren't
* possible are represented with a -1. The table contains at index
* lionpos_map[sente_lion][gote_lion - 3] the value for the particular
* lion configurations. It is assumed that lions are not in their
* opponents promotion zones, that the Sente lion is not on the
* A file and that if the Sente lion is on the B file, the Gote lion is
* not on the C file.
*/
static const unsigned char lionpos_map[SQUARE_COUNT - 4][SQUARE_COUNT - 3] = {
21, 22, 0, 1, 2, 3, 4, 5, 6, /* C4 */
-1, 23, 24, -1, 7, 8, -1, 9, 10, /* B4 */
-1, -1, -1, -1, -1, -1, -1, -1, -1, /* A4 */
-1, 25, 11, 26, 27, 12, 13, 14, 15, /* C3 */
-1, -1, 28, -1, 29, 30, -1, 16, 17, /* B3 */
-1, -1, -1, -1, -1, -1, -1, -1, -1, /* A3 */
31, 32, 18, -1, 33, 19, 34, 35, 20, /* C2 */
-1, 36, 37, -1, -1, 38, -1, 39, 40, /* B2 */
};
/*
* This is the inverse table corresponding to lionpos_map. The lower
* member of each index indicates the square of the Sente lion, the
* higher member indicates the square of the Gote lion.
*/
static const unsigned char lionpos_inverse[LIONPOS_TOTAL_COUNT][2] = {
0, 5, 0, 6, 0, 7, 0, 8, 0, 9, 0, 10, 0, 11,
1, 7, 1, 8, 1, 10, 1, 11,
3, 5, 3, 8, 3, 9, 3, 10, 3, 11,
4, 10, 4, 11,
6, 5, 6, 8, 6, 11,
0, 3, 0, 4,
1, 4, 1, 5,
3, 4, 3, 6, 3, 7,
4, 5, 4, 7, 4, 8,
6, 3, 6, 4, 6, 7, 6, 9, 6, 10,
7, 4, 7, 5, 7, 8, 7, 10, 7, 11
};
/*
* The following table encodes pairs of permuted square numbers (see
* documentation for encode_map) for non-lion pieces into a number.
* The index into the table has the form pair_map[high - 1] where
* high is the permuted square number of the piece with the higher
* permuted square number. The numbering scheme has been carefully
* laid out such that one table suffices for all amounts of remaining
* squares. This is achieved by arranging the codes such that the
* first code is the unique code for 2 remaining squares, the next
* two codes are the remaining two codes for 3 squares, etc.
* Visualized, the encoding scheme looks like this:
*
* 0: ##
* 1: # #
* 2: ##
* 3: # #
* 4: # #
* 5: ##
* 6: # #
* 7: # #
* 8: # #
* 9: ##
* ...
*
* Note that it is also immediately clear that only the high piece needs
* to be looked up, we can simply add the low square to the value looked
* up. We could also compute the whole code using the formula
*
* high * (high - 1) / 2 + low;
*
* but that seems to be slower than looking up the first half.
*
* The map could only go to 8 because two squares are always given
* to the lions and because the high piece can never be on the first
* square, but we also use it to look up the total possible ways to
* place two pieces on up to 10 squares, so it goes up to 9.
*
* pair_inverse is a lookup table to turn pairs of squares back into
* square numbers pair_inverse[i] is the largest number such that
* pair_map[pair_inverse[i]] <= i.
*/
static const unsigned char pair_map[SQUARE_COUNT - 2] = {
0, 1, 3, 6, 10, 15, 21, 28, 36, 45,
}, pair_inverse[45] = {
0,
1, 1,
2, 2, 2,
3, 3, 3, 3,
4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
8, 8, 8, 8, 8, 8, 8, 8, 8,
};
/*
* This algorithm maps piece locations bijectively onto numbers from
* 0 to n - 1 where n is the number of positions in the cohort
* corresponding to the position. The content of p is destroyed in the
* process. Here is a pseudo-code description
* of the algorithm:
*
* encode_map(position p, unsigned cohort):
* board_map <- 0 .. SQUARE_COUNT - 1;
* inverse_map <- 0 .. SQUARE_COUNT - 1;
*
* code <- lion position code;
* remove lion squares;
*
* for each kind of piece (chick, giraffe, elephant):
* code *= number of possibilities for this piece kind;
* code += number describing piece position
* remove squares for current kind of piece;
*
* p->status <- status from cohort
*
* return code;
*
* The idea is to keep an array of empty squares in board_map. Each time
* we place a piece on a square we remove that square from board_map by
* swapping it with the last piece in board_map and then decrementing the
* number of squares. This is done with the auxillary function
* remove_square implemented below.
*
* At the same time, we also try to figure out what cohort this position
* is in. This is done by tracking the number of pieces of each kind in
* cohortbits and looking up this figure in cohort_map later on. We
* need to track which pieces were swapped while encoding to adjust the
* ownership bits and if where two both pieces of a kind are in hand,
* normalize their ownership by swapping them if needed. This is done in
* the oswap variable.
*/
static void remove_square(unsigned char*, unsigned char*, unsigned, unsigned);
static void
encode_pieces(poscode *pc, struct position *p)
{
unsigned code = 0, i, squares = SQUARE_COUNT, high, low;
unsigned oswap = 0, cohortbits = 0;
unsigned char board_map[SQUARE_COUNT] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
}, inverse_map[SQUARE_COUNT] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
/* erase ownership information, leaving square numbers */
for (i = 0; i < PIECE_COUNT; i++)
p->pieces[i] &= ~GOTE_PIECE;
pc->lionpos = lionpos_map[p->pieces[LION_S]][p->pieces[LION_G] - 3];
assert(pc->lionpos != 0xff);
if (p->pieces[LION_S] > p->pieces[LION_G]) {
remove_square(board_map, inverse_map, --squares, p->pieces[LION_S]);
remove_square(board_map, inverse_map, --squares, p->pieces[LION_G]);
} else {
remove_square(board_map, inverse_map, --squares, p->pieces[LION_G]);
remove_square(board_map, inverse_map, --squares, p->pieces[LION_S]);
}
for (i = 0; i < 6; i += 2)
if (p->pieces[i + 1] == IN_HAND)
/* no piece to encode but normalize ownership */
if (p->pieces[i] == IN_HAND) {
if ((pc->ownership & 3 << i) == 2U << i)
oswap |= 3 << i;
} else {
/* encode one piece, no swap */
cohortbits |= 1 << i;
code = code * squares + inverse_map[p->pieces[i]];
remove_square(board_map, inverse_map, --squares, p->pieces[i]);
}
else
if (p->pieces[i] == IN_HAND) {
/* encode one piece, swap */
oswap |= 3 << i;
cohortbits |= 1 << i;
code = code * squares + inverse_map[p->pieces[i + 1]];
remove_square(board_map, inverse_map, --squares, p->pieces[i + 1]);
} else {
/* encode two pieces */
cohortbits |= 3 << i;
high = inverse_map[p->pieces[i]];
low = inverse_map[p->pieces[i + 1]];
/* need swap? */
if (high < low) {
oswap |= 3 << i;
unsigned tmp = high;
high = low;
low = tmp;
}
code = code * pair_map[squares - 1] + pair_map[high - 1] + low;
remove_square(board_map, inverse_map, --squares, high);
remove_square(board_map, inverse_map, --squares, low);
}
/* fix ownership and promotion bits */
pc->ownership ^= oswap & owner_flip[pc->ownership];
if (oswap & 3)
p->status = prom_flip[p->status];
/* look up cohort */
cohortbits |= p->status << 6;
pc->cohort = cohort_map[cohortbits];
assert(pc->cohort != (unsigned char)-1);
pc->map = code;
}
/*
* swap the square of the piece pc with the last square on the board with the
* board where n is the last square on the board. This operation is
* naively
*
* sq = inverse_map[pc],
* swap inverse_map[board_map[sq]] and inverse_map[board_map[n]]
* swap board_map[sq] and board_map[n];
*
* but we can optimize this procedure by realizing that both board_map[n]
* and inverse_map[pc] are never read again allowing us to skip
* assigning to them.
*/
static void
remove_square(unsigned char *board_map, unsigned char *inverse_map, unsigned n, unsigned pc)
{
unsigned sq = inverse_map[pc];
inverse_map[board_map[n]] = sq;
board_map[sq] = board_map[n];
}
/*
* This function takes a cohort and a piece map into the cohort and
* decodes the pieces encoded in there into p. The order of pieces
* of the same kind is indeterminate and must be corrected with a call
* to normalize_position afterwards.
*/
static void
place_pieces(struct position *p, unsigned cohort, unsigned lionpos, unsigned map)
{
const struct cohort_info *chinfo = cohort_info + cohort;
unsigned code[3], i, squares = SQUARE_COUNT, high, low;
unsigned char board_map[SQUARE_COUNT] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
};
code[2] = map % chinfo->sizes[2];
map /= chinfo->sizes[2];
code[1] = map % chinfo->sizes[1];
map /= chinfo->sizes[1];
code[0] = map; /* % chinfo->sizes[0] */
p->pieces[LION_S] = high = lionpos_inverse[lionpos][0];
p->pieces[LION_G] = low = lionpos_inverse[lionpos][1];
if (high > low) {
board_map[high] = board_map[--squares];
board_map[low] = board_map[--squares];
} else {
board_map[low] = board_map[--squares];
board_map[high] = board_map[--squares];
}
for (i = 0; i < 3; i++) {
switch (chinfo->pieces[i]) {
case 0:
p->pieces[2 * i] = IN_HAND;
p->pieces[2 * i + 1] = IN_HAND;
continue;
case 1:
p->pieces[2 * i] = board_map[code[i]];
p->pieces[2 * i + 1] = IN_HAND;
board_map[code[i]] = board_map[--squares];
break;
case 2:
high = pair_inverse[code[i]];
low = code[i] - pair_map[high];
assert(high >= low);
p->pieces[2 * i] = board_map[high + 1];
p->pieces[2 * i + 1] = board_map[low];
board_map[high + 1] = board_map[--squares];
board_map[low] = board_map[--squares];
break;
default:
/* UNREACHABLE */
assert(chinfo->pieces[i] <= 2);
}
}
p->status = chinfo->status;
}
/*
* If the position p can be mirrored such that the result has a
* different poscode than the original, mirror p and return nonzero.
* Otherwise return 0 and leave p unchaged. This function does not
* update p->map, its intent is to allow for the generation of both
* poscodes of a given position for generating the table base. It
* should not be used for other purposes.
*/
extern int
position_mirror(struct position *p)
{
/*
* We only check if both lions are on the B file. This is
* not as precise as possible, but the gain of doing less
* checks for every position probably offsets the loss of
* encoding a few more positions than necessary.
*/
if (piece_in(02222, p->pieces[LION_S])
&& piece_in(02222 << GOTE_PIECE, p->pieces[LION_G])) {
mirror_board(p);
return (1);
} else
return (0);
}