-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
101 lines (85 loc) · 3.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from collections import deque
import numpy as np
import gym
import random
import torch
from tqdm import tqdm
from unityagents import UnityEnvironment
import matplotlib.pyplot as plt
from dqn_agent import Agent
env = UnityEnvironment(file_name='Banana.app')
# env.seed(0)
print('Loaded env')
# get the default brain
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
print(brain)
# reset the environment
env_info = env.reset(train_mode=True)[brain_name]
# number of agents in the environment
print('Number of agents:', len(env_info.agents))
# number of actions
action_size = brain.vector_action_space_size
print('Number of actions:', action_size)
# examine the state space
state = env_info.vector_observations[0]
print('States look like:\n', state)
state_size = len(state)
print('States have length:', state_size)
seed = 0
# env_info = env.reset(train_mode=False)[brain_name] # reset the environment
state = env_info.vector_observations[0] # get the current state
score = 0
agent = Agent(state_size=state_size, action_size=action_size, seed=seed)
def dqn(n_episodes=2000, max_t=1000, eps_start=1.0, eps_end=0.01, eps_decay=0.995):
"""
Deep Q-Learning
Params
======
n_episodes (int): max number of training episodes
max_t (int): max number of timesteps per episode
eps_start (float): start value of epsilon, for epsilon-greedy action selection
eps_end (float): min value of epsilon
eps_decay (float): multiplicative factor (per episode) for decreasing epsilon
"""
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
eps = eps_start # initialize epsilon
for i_episode in range(1, n_episodes+1):
state = env.reset()
state = env_info.vector_observations[0]
score = 0
for t in range(max_t):
action = agent.act(state, eps)
results = env.step(action)
results= results['BananaBrain']
next_state, reward, done = results.vector_observations, results.rewards[0], results.local_done[0]
agent.step(state, action, reward, next_state, done)
state = next_state
score += reward
if done:
break
scores_window.append(score) # save most recent score
scores.append(score) # save most recent score
eps = max(eps_end, eps_decay*eps) # decrease epsilon
print('\rEpisode {}\tAverage Score: {:.2f}'.format(
i_episode, np.mean(scores_window)), end="")
if i_episode % 100 == 0:
print('\rEpisode {}\tAverage Score: {:.2f}'.format(
i_episode, np.mean(scores_window)))
if np.mean(scores_window) > 13:
print('\nEnvironment solved in {:d} episodes!\tAverage Score: {:.2f}'.format(
i_episode-100, np.mean(scores_window)))
torch.save(agent.qnetwork_local.state_dict(), 'checkpoint_test.pth')
break
return scores
scores = dqn()
env.close()
# plot the scores
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(np.arange(len(scores)), scores)
plt.ylabel('Score')
plt.xlabel('Episode #')
plt.savefig('model_performance.png')
plt.show()