-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtvdip.py
234 lines (187 loc) · 7.96 KB
/
tvdip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
tvdip.py
~~~~~~~~
This module is a direct port of the original [1] tvdip Matlab script into
NumPy.
[1] M.A. Little, Nick S. Jones (2010) "Sparse Bayesian Step-Filtering for High-
Throughput Analysis of Molecular Machine Dynamics", in 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, 2010, ICASSP 2010
Proceedings.
"""
import numpy as np
import scipy as Sci
from scipy import sparse
from scipy.sparse import linalg
import sys
def tvdiplmax(y):
"""Calculate the value of lambda so that if lambda >= lambdamax, the TVD
functional solved by TVDIP is minimized by the trivial constant solution
x = mean(y). This can then be used to determine a useful range of values
of lambda, for example.
Args:
y: Original signal to denoise, size N x 1.
Returns:
lambdamax: Value of lambda at which x = mean(y) is the output of the
TVDIP function.
"""
N = y.size
M = N - 1
# Construct sparse operator matrices
I1 = sparse.eye(M)
O1 = sparse.dia_matrix((M, 1))
D = sparse.hstack([I1, O1]) - sparse.hstack([O1, I1])
DDT = D.dot(D.conj().T)
Dy = D.dot(y)
lambdamax = np.absolute(linalg.spsolve(DDT, Dy)).max(0)
return lambdamax
def tvdip(y, lambdas, display=1, stoptol=1e-3, maxiter=60):
"""Performs discrete total variation denoising (TVD) using a primal-dual
interior-point solver. It minimizes the following discrete functional:
E=(1/2)||y-x||_2^2+lambda*||Dx||_1
over the variable x, given the input signal y, according to each value of
the regularization parametero lambda > 0. D is the first difference matrix.
Uses hot-restarts from each value of lambda to speed up convergence for
subsequent values: best use of the feature is made by ensuring that the
chosen lambda values are close to each other.
Args:
y: Original signal to denoise, size N x 1.
lambdas: A vector of positive regularization parameters, size L x 1.
TVD will be applied to each value in the vector.
display: (Optional) Set to 0 to turn off progress display, 1 to turn
on. Defaults to 1.
stoptol: (Optional) Precision as determined by duality gap tolerance,
if not specified defaults to 1e-3.
maxiter: (Optional) Maximum interior-point iterations, if not specified
defaults to 60.
Returns:
x: Denoised output signal for each value of lambda, size N x L.
E: Objective functional at minimum for each lamvda, size L x 1.
s: Optimization result, 1 = solved, 0 = maximum iterations
exceeded before reaching duality gap tolerance, size L x 1.
lambdamax: Maximum value of lambda for the given y. If
lambda >= lambdamax, the output is the trivial constant solution
x = mean(y).
Example:
>>> import numpy as np
>>> import tvdip as tv
>>> # Find the value of lambda greater than which the TVD solution is
>>> # just the mean.
>>> lmax = tv.tvdiplmax(y)
>>> # Perform TV denoising for lambda across a range of values up to a
>>> # small fraction of the maximum found above.
>>> lratio = np.array([1e-4, 1e-3, 1e-2, 1e-1])
>>> x, E, status, l_max = tv.tvdip(y, lmax*lratio, True, 1e-3)
>>> plot(x[:,0])
"""
# Search tuning parameters
ALPHA = 0.01 # Backtracking linesearch parameter (0,0.5]
BETA = 0.5 # Backtracking linesearch parameter (0,1)
MAXLSITER = 20 # Max iterations of backtracking linesearch
MU = 2 # t update
N = y.size # Length of input signal y
M = N - 1 # Size of Dx
# Construct sparse operator matrices
I1 = sparse.eye(M)
O1 = sparse.dia_matrix((M, 1))
D = sparse.hstack([I1, O1]) - sparse.hstack([O1, I1])
DDT = D.dot(D.conj().T)
Dy = D.dot(y)
# Find max value of lambda
lambdamax = (np.absolute(linalg.spsolve(DDT, Dy))).max(0)
if display:
print "lambda_max=%5.2e" % lambdamax
L = lambdas.size
x = np.zeros((N, L))
s = np.zeros((L, 1))
E = np.zeros((L, 1))
# Optimization variables set up once at the start
z = np.zeros((M, 1))
mu1 = np.ones((M, 1))
mu2 = np.ones((M, 1))
# Work through each value of lambda, with hot-restart on optimization
# variables
for idx, l in enumerate(lambdas):
t = 1e-10
step = np.inf
f1 = z - l
f2 = -z - l
# Main optimization loop
s[idx] = 1
if display:
print "Solving for lambda={0:5.2e}, lambda/lambda_max={1:5.2e}".format(l, l/lambdamax)
print "Iter# primal Dual Gap"
for iters in xrange(maxiter):
DTz = (z.conj().T * D).conj().T
DDTz = D.dot(DTz)
w = Dy - (mu1 - mu2)
# Calculate objectives and primal-dual gap
pobj1 = 0.5*w.conj().T.dot(linalg.spsolve(DDT,w))+l*(np.sum(mu1+mu2))
pobj2 = 0.5*DTz.conj().T.dot(DTz)+l*np.sum(np.absolute(Dy-DDTz))
pobj = np.minimum(pobj1, pobj2)
dobj = -0.5*DTz.conj().T.dot(DTz) + Dy.conj().T.dot(z)
gap = pobj - dobj
if display:
print "{:5d} {:7.2e} {:7.2e} {:7.2e}".format(iters, pobj[0, 0],
dobj[0, 0],
gap[0, 0])
# Test duality gap stopping criterion
if (gap <= stoptol).all():
s[idx] = 1
break
if step >= 0.2:
t = np.maximum(2*M*MU/gap, 1.2*t)
# Do Newton step
rz = DDTz - w
Sdata = (mu1/f1 + mu2/f2)
S = DDT-sparse.csc_matrix((Sdata.reshape(Sdata.size),
(np.arange(M), np.arange(M))))
r = -DDTz + Dy + (1/t)/f1 - (1/t)/f2
dz = linalg.spsolve(S, r).reshape(r.size, 1)
dmu1 = -(mu1+((1/t)+dz*mu1)/f1)
dmu2 = -(mu2+((1/t)-dz*mu2)/f2)
resDual = rz.copy()
resCent = np.vstack((-mu1*f1-1/t, -mu2*f2-1/t))
residual = np.vstack((resDual, resCent))
# Perform backtracking linesearch
negIdx1 = dmu1 < 0
negIdx2 = dmu2 < 0
step = 1
if np.any(negIdx1):
step = np.minimum(step,
0.99*(-mu1[negIdx1]/dmu1[negIdx1]).min(0))
if np.any(negIdx2):
step = np.minimum(step,
0.99*(-mu2[negIdx2]/dmu2[negIdx2]).min(0))
for _ in xrange(MAXLSITER):
newz = z + step*dz
newmu1 = mu1 + step*dmu1
newmu2 = mu2 + step*dmu2
newf1 = newz - l
newf2 = -newz - l
# Update residuals
newResDual = DDT.dot(newz) - Dy + newmu1 - newmu2
newResCent = np.vstack((-newmu1*newf1-1/t, -newmu2*newf2-1/t))
newResidual = np.vstack((newResDual, newResCent))
if (np.maximum(newf1.max(0), newf2.max(0)) < 0
and (Sci.linalg.norm(newResidual) <=
(1-ALPHA*step)*Sci.linalg.norm(residual))):
break
step = BETA * step
# Update primal and dual optimization parameters
z = newz
mu1 = newmu1
mu2 = newmu2
f1 = newf1
f2 = newf2
x[:, idx] = (y-D.conj().T.dot(z)).reshape(x.shape[0])
xval = x[:, idx].reshape(x.shape[0], 1)
E[idx] = 0.5*np.sum((y-xval)**2)+l*np.sum(np.absolute(D.dot(xval)))
# We may have a close solution that does not satisfy the duality gap
if iters >= maxiter:
s[idx] = 0
if display:
if s[idx]:
print("Solved to precision of duality gap %5.2e") % gap
else:
print("Max iterations exceeded - solution may be inaccurate")
return x, E, s, lambdamax