-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathtrain_rnn.py
98 lines (80 loc) · 3.9 KB
/
train_rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# -*- coding:utf-8 -*-
import logging
import time
import tensorflow as tf
from build_rnn import AFD_RNN
from utils import parser_cfg_file
from data_load import DataLoad
class AFD_RNN_Train(object):
def __init__(self, train_config):
self.learing_rate = float(train_config['learning_rate'])
self.train_iterior = int(train_config['train_iteration'])
self._train_logger_init()
net_config = parser_cfg_file('./config/rnn_net.cfg')
self.rnn_net = AFD_RNN(net_config)
self.predict = self.rnn_net.build_net_graph()
self.label = tf.placeholder(tf.float32, [None, self.rnn_net.time_step, self.rnn_net.class_num])
def _compute_loss(self):
with tf.name_scope('loss'):
# [batchszie, time_step, class_num] ==> [time_step][batchsize, class_num]
predict = tf.unstack(self.predict, axis=0)
label = tf.unstack(self.label, axis=1)
loss = [tf.nn.softmax_cross_entropy_with_logits(labels=label[i], logits=predict[i]) for i in range(self.rnn_net.time_step) ]
loss = tf.reduce_mean(loss)
train_op = tf.train.AdamOptimizer(self.learing_rate).minimize(loss)
return loss, train_op
def train_rnn(self):
loss, train_op = self._compute_loss()
with tf.name_scope('accuracy'):
predict = tf.transpose(self.predict, [1,0,2])
correct_pred = tf.equal(tf.argmax(self.label, 2), tf.argmax(predict, axis=2))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
dataset = DataLoad('./dataset/train/', time_step=self.rnn_net.time_step, class_num= self.rnn_net.class_num)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for step in range(1, self.train_iterior+1):
x, y = dataset.get_batch(self.rnn_net.batch_size)
if step == 1:
feed_dict = {self.rnn_net.input_tensor: x, self.label: y}
else:
feed_dict = {self.rnn_net.input_tensor: x, self.label: y, self.rnn_net.cell_state:state}
_, compute_loss, state = sess.run([train_op, loss, self.rnn_net.cell_state], feed_dict=feed_dict)
if step%10 == 0:
compute_accuracy = sess.run(accuracy, feed_dict=feed_dict)
self.train_logger.info('train step = %d,loss = %f,accuracy = %f'%(step, compute_loss, compute_accuracy))
if step%1000 == 0:
save_path = saver.save(sess, './model/model.ckpt')
self.train_logger.info("train step = %d ,model save to =%s" % (step, save_path))
def _train_logger_init(self):
"""
初始化log日志
:return:
"""
self.train_logger = logging.getLogger('train')
self.train_logger.setLevel(logging.DEBUG)
# 添加文件输出
log_file = './train_logs/' + time.strftime('%Y%m%d%H%M', time.localtime(time.time())) + '.logs'
file_handler = logging.FileHandler(log_file, mode='w')
file_handler.setLevel(logging.DEBUG)
file_formatter = logging.Formatter('%(asctime)s - %(filename)s[line:%(lineno)d] - %(levelname)s: %(message)s')
file_handler.setFormatter(file_formatter)
self.train_logger.addHandler(file_handler)
# 添加控制台输出
consol_handler = logging.StreamHandler()
consol_handler.setLevel(logging.DEBUG)
consol_formatter = logging.Formatter('%(message)s')
consol_handler.setFormatter(consol_formatter)
self.train_logger.addHandler(consol_handler)
if __name__ == '__main__':
train_config = parser_cfg_file('./config/train.cfg')
train = AFD_RNN_Train(train_config)
train.train_rnn()
# a = tf.zeros([1,2,3])
# b = tf.unstack(a, axis=1)
# c = tf.zeros([2,1,3])
# sess = tf.Session()
# d = b[0]
# print(sess.run(b[0]))
#
# pass