-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathimage.py
executable file
·284 lines (230 loc) · 7.72 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Thu Sep 9 23:11:51 2020
image
@author: chineseocr
"""
import base64
import json
import cv2
import numpy as np
import six
from PIL import Image
def plot_lines(img, lines, linetype=2):
tmp = np.copy(img)
for line in lines:
p1, p2 = line
cv2.line(tmp, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), (0, 0, 0), linetype, lineType=cv2.LINE_AA)
return Image.fromarray(tmp)
def base64_to_PIL(string):
try:
base64_data = base64.b64decode(string)
buf = six.BytesIO()
buf.write(base64_data)
buf.seek(0)
img = Image.open(buf).convert('RGB')
return img
except:
return None
def read_json(p):
with open(p) as f:
jsonData = json.loads(f.read())
shapes = jsonData.get('shapes')
imageData = jsonData.get('imageData')
lines = []
labels = []
for shape in shapes:
lines.append(shape['points'])
[x0, y0], [x1, y1] = shape['points']
label = shape['label']
if label == '0':
if abs(y1 - y0) > 500:
label = '1'
elif label == '1':
if abs(x1 - x0) > 500:
label = '0'
labels.append(label)
img = base64_to_PIL(imageData)
return img, lines, labels
from numpy import cos, sin, pi
def rotate(x, y, angle, cx, cy):
"""
点(x,y) 绕(cx,cy)点旋转
"""
angle = angle * pi / 180
x_new = (x - cx) * cos(angle) - (y - cy) * sin(angle) + cx
y_new = (x - cx) * sin(angle) + (y - cy) * cos(angle) + cy
return x_new, y_new
def box_rotate(box, angle=0, imgH=0, imgW=0):
"""
对坐标进行旋转 逆时针方向 0\90\180\270,
"""
x1, y1, x2, y2, x3, y3, x4, y4 = box[:8]
if angle == 90:
x1_, y1_ = y2, imgW - x2
x2_, y2_ = y3, imgW - x3
x3_, y3_ = y4, imgW - x4
x4_, y4_ = y1, imgW - x1
elif angle == 180:
x1_, y1_ = imgW - x3, imgH - y3
x2_, y2_ = imgW - x4, imgH - y4
x3_, y3_ = imgW - x1, imgH - y1
x4_, y4_ = imgW - x2, imgH - y2
elif angle == 270:
x1_, y1_ = imgH - y4, x4
x2_, y2_ = imgH - y1, x1
x3_, y3_ = imgH - y2, x2
x4_, y4_ = imgH - y3, x3
else:
x1_, y1_, x2_, y2_, x3_, y3_, x4_, y4_ = x1, y1, x2, y2, x3, y3, x4, y4
return (x1_, y1_, x2_, y2_, x3_, y3_, x4_, y4_)
def angle_transpose(p, angle, w, h):
x, y = p
if angle == 90:
x, y = y, w - x
elif angle == 180:
x, y = w - x, h - y
elif angle == 270:
x, y = h - y, x
return x, y
def img_argument(img, lines, labels, size=(512, 512)):
w, h = img.size
if np.random.randint(0, 100) > 80:
degree = np.random.uniform(-5, 5)
else:
degree = 0
# degree = np.random.uniform(-5,5)
newlines = []
for line in lines:
p1, p2 = line
p1 = rotate(p1[0], p1[1], degree, w / 2, h / 2)
p2 = rotate(p2[0], p2[1], degree, w / 2, h / 2)
newlines.append([p1, p2])
# img = img.rotate(-degree,center=(w/2,h/2),resample=Image.BILINEAR,fillcolor=(128,128,128))
img = img.rotate(-degree, center=(w / 2, h / 2), resample=Image.BILINEAR)
angle = np.random.choice([0, 90, 180, 270], 1)[0]
newlables = []
for i in range(len(newlines)):
p1, p2 = newlines[i]
p1 = angle_transpose(p1, angle, w, h)
p2 = angle_transpose(p2, angle, w, h)
newlines[i] = [p1, p2]
if angle in [90, 270]:
if labels[i] == '0':
newlables.append('1')
else:
newlables.append('0')
else:
newlables.append(labels[i])
if angle == 90:
img = img.transpose(Image.ROTATE_90)
elif angle == 180:
img = img.transpose(Image.ROTATE_180)
elif angle == 270:
img = img.transpose(Image.ROTATE_270)
return img, newlines, newlables
def fill_lines(img, lines, linetype=2):
tmp = np.copy(img)
for line in lines:
p1, p2 = line
cv2.line(tmp, (int(p1[0]), int(p1[1])), (int(p2[0]), int(p2[1])), 255, linetype, lineType=cv2.LINE_AA)
return tmp
def get_img_label(p, size, linetype=1):
img, lines, labels = read_json(p)
img, lines = img_resize(img, lines, target_size=512, max_size=1024)
img, lines, labels = img_argument(img, lines, labels, size)
img, lines, labels = get_random_data(img, lines, labels, size=size)
lines = np.array(lines)
labels = np.array(labels)
labelImg0 = np.zeros(size[::-1], dtype='uint8')
labelImg1 = np.zeros(size[::-1], dtype='uint8')
ind = np.where(labels == '0')[0]
labelImg0 = fill_lines(labelImg0, lines[ind], linetype=linetype)
ind = np.where(labels == '1')[0]
labelImg1 = fill_lines(labelImg1, lines[ind], linetype=linetype)
labelY = np.zeros((size[1], size[0], 2), dtype='uint8')
labelY[:, :, 0] = labelImg0
labelY[:, :, 1] = labelImg1
labelY = labelY > 0
return np.array(img), lines, labelY
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
def rand(a=0, b=1):
return np.random.rand() * (b - a) + a
def get_random_data(image, lines, labels, size=(1024, 1024), jitter=.3, hue=.1, sat=1.5, val=1.5):
'''random preprocessing for real-time data augmentation'''
iw, ih = image.size
# resize image
w, h = size
new_ar = w / h * rand(1 - jitter, 1 + jitter) / rand(1 - jitter, 1 + jitter)
# scale = rand(.2, 2)
scale = rand(0.2, 3)
if new_ar < 1:
nh = int(scale * h)
nw = int(nh * new_ar)
else:
nw = int(scale * w)
nh = int(nw / new_ar)
image = image.resize((nw, nh), Image.BICUBIC)
# place image
dx = int(rand(0, w - nw))
dy = int(rand(0, h - nh))
new_image = Image.new('RGB', (w, h), (128, 128, 128))
new_image.paste(image, (dx, dy))
image = new_image
# distort image
hue = rand(-hue, hue)
sat = rand(1, sat) if rand() < .5 else 1 / rand(1, sat)
val = rand(1, val) if rand() < .5 else 1 / rand(1, val)
x = rgb_to_hsv(np.array(image) / 255.)
x[..., 0] += hue
x[..., 0][x[..., 0] > 1] -= 1
x[..., 0][x[..., 0] < 0] += 1
x[..., 1] *= sat
x[..., 2] *= val
x[x > 1] = 1
x[x < 0] = 0
image_data = hsv_to_rgb(x) # numpy array, 0 to 1
N = len(lines)
for i in range(N):
p1, p2 = lines[i]
p1 = p1[0] * nw / iw + dx, p1[1] * nh / ih + dy
p2 = p2[0] * nw / iw + dx, p2[1] * nh / ih + dy
lines[i] = [p1, p2]
return image_data, lines, labels
def gen(paths, batchsize=2, linetype=2):
num = len(paths)
i = 0
while True:
# sizes = [512,512,512,512,640,1024] ##多尺度训练
# size = np.random.choice(sizes,1)[0]
size = 640
X = np.zeros((batchsize, size, size, 3))
Y = np.zeros((batchsize, size, size, 2))
for j in range(batchsize):
if i >= num:
i = 0
np.random.shuffle(paths)
p = paths[i]
i += 1
# linetype=2
img, lines, labelImg = get_img_label(p, size=(size, size), linetype=linetype)
X[j] = img
Y[j] = labelImg
yield X, Y
def img_resize(im, lines, target_size=600, max_size=1500):
w, h = im.size
im_size_min = np.min(im.size)
im_size_max = np.max(im.size)
im_scale = float(target_size) / float(im_size_min)
if max_size is not None:
if np.round(im_scale * im_size_max) > max_size:
im_scale = float(max_size) / float(im_size_max)
im = im.resize((int(w * im_scale), int(h * im_scale)), Image.BICUBIC)
N = len(lines)
for i in range(N):
p1, p2 = lines[i]
p1 = p1[0] * im_scale, p1[1] * im_scale
p2 = p2[0] * im_scale, p2[1] * im_scale
lines[i] = [p1, p2]
return im, lines