-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_load.R
198 lines (162 loc) · 5.41 KB
/
data_load.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
if(FALSE){
# -*- coding: utf-8 -*-
"
Created on Tue Nov 26 21:27:12 2019
@author: chenxinye
"
}
library(magrittr)
library(jiebaR)
library(tidytext)
library(dplyr)
setwd('I:/E-commerce information mining')
cutter <- worker(type = "tag", stop_word = "dict/stoplist.txt")
SAVE = TRUE
sku_collect = c(
'7824307','136360','7265743','46472869374','100000198663','51382064682','3567887'
)
#define the word beyond the stop words, which will be deleted later!
nonword_vec <- c("亲爱",
"官方",
"客服",
"竭诚",
"咨询",
"愉快",
"京东",
"服务",
"反馈",
"支持",
"热线",
"致电",
"体验",
"产品",
"放心使用",
"出厂",
"在线",
"如有",
"尝试",
"自营",
"正规",
"安装",
"疑问"
)
load_data <- function(sku_collect, properties = 'po'){
if(FALSE)
{
"
In this section, I just got positve and negative datas respectively.
To enlarge the data, you can get data by web crawler I wrote from https://github.com/chenxinye/web-crawler-for-reviews
"
}
n_len = length(sku_collect)
pbind_reviews = data.frame();nbind_reviews = data.frame()
if(properties == 'po'){
for (i in 1:n_len){
tryCatch({
pfile = paste('org_data/', sku_collect[i], sep = '')
pfile = paste(pfile, 'po.csv', sep = '')
previews = read.csv(pfile, encoding = 'UTF-8')
previews$reviews_id = sku_collect[i]
pbind_reviews = rbind(pbind_reviews, previews)
}, warning = function(w) {
print(w)
}, error = function(e) {
print(e)
}, finally = {
print(paste(sku_collect[i], ' pass!', sep = ''))
})
}
return(pbind_reviews)
}else if(properties == 'ne'){
for (i in 1:n_len){
tryCatch({
nfile = paste('org_data/', sku_collect[i], sep = '')
nfile = paste(nfile, 'ne.csv', sep = '')
nreviews = read.csv(nfile, encoding = 'UTF-8')
nreviews$reviews_id = sku_collect[i]
nbind_reviews = rbind(nbind_reviews, nreviews)
}, warning = function(w) {
print(w)
}, error = function(e) {
print(e)
}, finally = {
print(paste(sku_collect[i], ' pass!', sep = ''))
})
}
return(nbind_reviews)
}
}
delete_nonuseword <- function(comment,vector,numbool=T,wordbool=F){
# delete some useless notations, numbers, etc.
reviews = comment
if(numbool){
reviews = gsub("[a-zA-Z0-9]", "", reviews)
}
if(wordbool){
for (i in vector){reviews = gsub(as.character(i), "", reviews)}
}
reviews = gsub("[&|;]", "", reviews)
reviews = gsub("\\\\", "", reviews)
return (reviews)
}
return_segment <- function(df,vector,nb=T,wb=F){
reviews <- delete_nonuseword(df,vector,numbool=nb, wordbool=wb)
seg_word <- list()
for(i in 1:length(reviews)){
seg_word[[i]] <- segment(reviews[i], cutter)
}
return(seg_word)
}
return_result <- function(seg_word){
n_word <- sapply(seg_word, length)
index <- rep(1:length(seg_word), n_word)
nature <- unlist(sapply(seg_word, names))
result <- data.frame(index, unlist(seg_word), nature)
colnames(result) <- c("id", "word","nature")
n_word <- sapply(split(result,result$id), nrow)
index_word <- sapply(n_word, seq_len)
index_word <- unlist(index_word)
result$index_word <- index_word
return(result)
}
#reviews <- sku_collect %>% load_data()
#previews <- reviews[1]; nreviews <- reviews[2] #has modified the bug, originally designed to return multiple varibles
previews <- sku_collect %>% load_data(properties = 'po')
nreviews <- sku_collect %>% load_data(properties = 'ne')
delete_useless = FALSE # do not use nonword_vec.
if (delete_useless){
ps_seg <- return_segment(previews$X.U.FEFF.comments,nonword_vec,nb=T,wb=T)
ng_seg <- return_segment(nreviews$X.U.FEFF.comments,nonword_vec,nb=T,wb=T)
}else{
ps_seg <- return_segment(previews$X.U.FEFF.comments,nonword_vec,nb=T,wb=F)
ng_seg <- return_segment(nreviews$X.U.FEFF.comments,nonword_vec,nb=T,wb=F)
}
ps_term = ps_seg %>% return_result()
ng_term = ng_seg %>% return_result()
tfidf_Get <- function(term){
#In this part, I get tf-idf of each word.
term$word %>%table() -> frequency
data.frame(frequency %>% sort(decreasing = TRUE)) -> frequency
c('word', 'n') -> names(frequency)
inner_join(term, frequency) -> term
term %>% bind_tf_idf(word, id, n) %>% arrange(desc(tf_idf)) -> return_df
print(head(return_df, 20))
return(return_df)
}
ps_term %>% tfidf_Get() -> pstfidf; ng_term %>% tfidf_Get() -> ngtfidf
print('useless words of positive words')
pstfidf[which(pstfidf$n < 50 & pstfidf$tf_idf < 0.0004),] -> Ps_nonword_vec
tail(Ps_nonword_vec, 125)
print('useless words of negative words') # "Brushing" word/conversation
ngtfidf[which(ngtfidf$n < 50 & ngtfidf$tf_idf < 0.001),] -> Ng_nonword_vec
tail(Ng_nonword_vec, 125)
#just test!
Ps_nonword_vec$id -> Ps_conversation_id
previews$X.U.FEFF.comments[Ps_conversation_id] -> Ps_conversation
Ng_nonword_vec$id -> Ng_conversation_id
nreviews$X.U.FEFF.comments[Ng_conversation_id] -> Ng_conversation
#get results
if(SAVE){
pstfidf %>% write.csv(file = "save/pstfidf.csv", row.names = FALSE)
ngtfidf %>% write.csv(file = "save/ngtfidf.csv", row.names = FALSE)
}