forked from Traumflug/Teacup_Firmware
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdda.c
992 lines (870 loc) · 33.4 KB
/
dda.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
#include "dda.h"
/** \file
\brief Digital differential analyser - this is where we figure out which steppers need to move, and when they need to move
*/
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "dda_maths.h"
#include "preprocessor_math.h"
#include "dda_kinematics.h"
#include "dda_lookahead.h"
#include "cpu.h"
#include "timer.h"
#include "serial.h"
#include "gcode_parse.h"
#include "dda_queue.h"
#include "debug.h"
#include "sersendf.h"
#include "pinio.h"
#include "memory_barrier.h"
//#include "graycode.c"
#ifdef DC_EXTRUDER
#include "heater.h"
#endif
/*
position tracking
*/
/// \var startpoint
/// \brief target position of last move in queue
TARGET BSS startpoint;
/// \var startpoint_steps
/// \brief target position of last move in queue, expressed in steps
TARGET BSS startpoint_steps;
/// \var current_position
/// \brief actual position of extruder head
/// \todo make current_position = real_position (from endstops) + offset from G28 and friends
TARGET BSS current_position;
/// \var move_state
/// \brief numbers for tracking the current state of movement
MOVE_STATE BSS move_state;
/// \var steps_per_m_P
/// \brief motor steps required to advance one meter on each axis
static const axes_uint32_t PROGMEM steps_per_m_P = {
STEPS_PER_M_X,
STEPS_PER_M_Y,
STEPS_PER_M_Z,
STEPS_PER_M_E
};
/// \var maximum_feedrate_P
/// \brief maximum allowed feedrate on each axis
static const axes_uint32_t PROGMEM maximum_feedrate_P = {
MAXIMUM_FEEDRATE_X,
MAXIMUM_FEEDRATE_Y,
MAXIMUM_FEEDRATE_Z,
MAXIMUM_FEEDRATE_E
};
/// \var c0_P
/// \brief Initialization constant for the ramping algorithm. Timer cycles for
/// first step interval.
static const axes_uint32_t PROGMEM c0_P = {
(uint32_t)((double)F_CPU / SQRT((double)STEPS_PER_M_X * ACCELERATION / 2000.)),
(uint32_t)((double)F_CPU / SQRT((double)STEPS_PER_M_Y * ACCELERATION / 2000.)),
(uint32_t)((double)F_CPU / SQRT((double)STEPS_PER_M_Z * ACCELERATION / 2000.)),
(uint32_t)((double)F_CPU / SQRT((double)STEPS_PER_M_E * ACCELERATION / 2000.))
};
/*! Set the direction of the 'n' axis
*/
static void set_direction(DDA *dda, enum axis_e n, int32_t delta) {
uint8_t dir = (delta >= 0) ? 1 : 0;
if (n == X)
dda->x_direction = dir;
else if (n == Y)
dda->y_direction = dir;
else if (n == Z)
dda->z_direction = dir;
else if (n == E)
dda->e_direction = dir;
}
/*! Find the direction of the 'n' axis
*/
static int8_t get_direction(DDA *dda, enum axis_e n) {
if ((n == X && dda->x_direction) ||
(n == Y && dda->y_direction) ||
(n == Z && dda->z_direction) ||
(n == E && dda->e_direction))
return 1;
else
return -1;
}
/*! Inititalise DDA movement structures
*/
void dda_init(void) {
// set up default feedrate
if (startpoint.F == 0)
startpoint.F = next_target.target.F = SEARCH_FEEDRATE_Z;
if (startpoint.e_multiplier == 0)
startpoint.e_multiplier = next_target.target.e_multiplier = 256;
if (startpoint.f_multiplier == 0)
startpoint.f_multiplier = next_target.target.f_multiplier = 256;
}
/*! Distribute a new startpoint to DDA's internal structures without any movement.
This is needed for example after homing or a G92. The new location must be in startpoint already.
*/
void dda_new_startpoint(void) {
axes_um_to_steps(startpoint.axis, startpoint_steps.axis);
startpoint_steps.axis[E] = um_to_steps(startpoint.axis[E], E);
}
/*! CREATE a dda given current_position and a target, save to passed location so we can write directly into the queue
\param *dda pointer to a dda_queue entry to overwrite
\param *target the target position of this move
\ref startpoint the beginning position of this move
This function does a /lot/ of math. It works out directions for each axis, distance travelled, the time between the first and second step
It also pre-fills any data that the selected accleration algorithm needs, and can be pre-computed for the whole move.
This algorithm is probably the main limiting factor to print speed in terms of firmware limitations
*
* Regarding lookahead, we can distinguish everything into these cases:
*
* 1. Standard movement. To be joined with the previous move.
* 2. Movement after a pause. This interrupts lookahead, and invalidates
* prev_dda and prev_distance.
* 3. Non-move, e.g. a wait for temp. This also interrupts lookahead and makes
* prev_dda and prev_distance invalid. There might be more such cases in the
* future, e.g. when heater or fan changes are queued up, too.
* 4. Nullmove due to no movement expected, e.g. a pure speed change. This
* shouldn't interrupt lookahead and be handled af if the change would come
* with the next movement.
* 5. Nullmove due to movement smaller than a single step. Shouldn't interrupt
* lookahead either, but this small distance should be added to the next
* movement.
* 6. Lookahead calculation too slow. This is handled in dda_join_moves()
* already.
*/
void dda_create(DDA *dda, const TARGET *target) {
axes_uint32_t delta_um;
axes_int32_t steps;
uint32_t distance, c_limit, c_limit_calc;
enum axis_e i;
#ifdef LOOKAHEAD
// Number the moves to identify them; allowed to overflow.
static uint8_t idcnt = 0;
static DDA* prev_dda = NULL;
if ((prev_dda && prev_dda->done) || dda->waitfor_temp)
prev_dda = NULL;
#endif
if (dda->waitfor_temp)
return;
// We end at the passed target.
memcpy(&(dda->endpoint), target, sizeof(TARGET));
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR("\nCreate: X %lq Y %lq Z %lq F %lu\n"),
dda->endpoint.axis[X], dda->endpoint.axis[Y],
dda->endpoint.axis[Z], dda->endpoint.F);
// Apply feedrate multiplier.
if (dda->endpoint.f_multiplier != 256) {
dda->endpoint.F *= dda->endpoint.f_multiplier;
dda->endpoint.F += 128;
dda->endpoint.F /= 256;
}
#ifdef LOOKAHEAD
// Set the start and stop speeds to zero for now = full stops between
// moves. Also fallback if lookahead calculations fail to finish in time.
dda->crossF = 0;
dda->start_steps = 0;
dda->end_steps = 0;
// Give this move an identifier.
dda->id = idcnt++;
#endif
// Handle bot axes. They're subject to kinematics considerations.
code_axes_to_stepper_axes(&startpoint, target, delta_um, steps);
for (i = X; i < E; i++) {
int32_t delta_steps;
delta_steps = steps[i] - startpoint_steps.axis[i];
dda->delta[i] = (uint32_t)labs(delta_steps);
startpoint_steps.axis[i] = steps[i];
set_direction(dda, i, delta_steps);
#ifdef LOOKAHEAD
// Also displacements in micrometers, but for the lookahead alogrithms.
// TODO: this is redundant. delta_um[] and dda->delta_um[] differ by
// just signedness and storage location. Ideally, dda is used
// as storage place only if neccessary (LOOKAHEAD turned on?)
// because this space is multiplied by the movement queue size.
//
// Update 2014/10: it was tried to use delta_um[]'s sign to set stepper
// direction in dda_start() to allow getting rid of
// some of this redundancy, but this increases dda_start()
// by at least 20 clock cycles. Not good for performance.
// Tried code can be found in the archive folder.
dda->delta_um[i] = (delta_steps >= 0) ?
(int32_t)delta_um[i] : -(int32_t)delta_um[i];
#endif
}
// Handle extruder axes. They act independently from the bots kinematics
// type, but are subject to other special handling.
steps[E] = um_to_steps(target->axis[E], E);
// Apply extrusion multiplier.
if (target->e_multiplier != 256) {
steps[E] *= target->e_multiplier;
steps[E] += 128;
steps[E] /= 256;
}
if ( ! target->e_relative) {
int32_t delta_steps;
delta_um[E] = (uint32_t)labs(target->axis[E] - startpoint.axis[E]);
delta_steps = steps[E] - startpoint_steps.axis[E];
dda->delta[E] = (uint32_t)labs(delta_steps);
startpoint_steps.axis[E] = steps[E];
set_direction(dda, E, delta_steps);
#ifdef LOOKAHEAD
// Also displacements in micrometers, but for the lookahead alogrithms.
// TODO: this is redundant. delta_um[] and dda->delta_um[] differ by
// just signedness and storage location. Ideally, dda is used
// as storage place only if neccessary (LOOKAHEAD turned on?)
// because this space is multiplied by the movement queue size.
dda->delta_um[E] = (delta_steps >= 0) ?
(int32_t)delta_um[E] : -(int32_t)delta_um[E];
#endif
}
else {
// When we get more extruder axes:
// for (i = E; i < AXIS_COUNT; i++) { ...
delta_um[E] = (uint32_t)labs(target->axis[E]);
dda->delta[E] = (uint32_t)labs(steps[E]);
#ifdef LOOKAHEAD
dda->delta_um[E] = target->axis[E];
#endif
dda->e_direction = (target->axis[E] >= 0)?1:0;
}
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR("[%ld,%ld,%ld,%ld]"),
target->axis[X] - startpoint.axis[X], target->axis[Y] - startpoint.axis[Y],
target->axis[Z] - startpoint.axis[Z], target->axis[E] - startpoint.axis[E]);
// Admittedly, this looks like it's overcomplicated. Why store three 32-bit
// values if storing an axis number would be fully sufficient? Well, I'm not
// sure, but my feeling says that when we achieve true circles and Beziers,
// we'll have total_steps which matches neither of X, Y, Z or E. Accordingly,
// keep it for now. --Traumflug
for (i = X; i < AXIS_COUNT; i++) {
if (i == X || dda->delta[i] > dda->total_steps) {
dda->fast_axis = i;
dda->total_steps = dda->delta[i];
dda->fast_um = delta_um[i];
dda->fast_spm = pgm_read_dword(&steps_per_m_P[i]);
}
}
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR(" [ts:%lu"), dda->total_steps);
if (dda->total_steps == 0) {
dda->nullmove = 1;
}
else {
// get steppers ready to go
power_on();
stepper_enable();
x_enable();
y_enable();
#ifndef Z_AUTODISABLE
z_enable();
// #else Z is enabled in dda_start().
#endif
e_enable();
// since it's unusual to combine X, Y and Z changes in a single move on reprap, check if we can use simpler approximations before trying the full 3d approximation.
if (delta_um[Z] == 0)
distance = approx_distance(delta_um[X], delta_um[Y]);
else if (delta_um[X] == 0 && delta_um[Y] == 0)
distance = delta_um[Z];
else
distance = approx_distance_3(delta_um[X], delta_um[Y], delta_um[Z]);
if (distance < 2)
distance = delta_um[E];
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR(",ds:%lu"), distance);
#ifdef ACCELERATION_TEMPORAL
// bracket part of this equation in an attempt to avoid overflow:
// 60 * 16 MHz * 5 mm is > 32 bits
uint32_t move_duration, md_candidate;
move_duration = distance * ((60 * F_CPU) / (dda->endpoint.F * 1000UL));
for (i = X; i < AXIS_COUNT; i++) {
md_candidate = dda->delta[i] * ((60 * F_CPU) /
(pgm_read_dword(&maximum_feedrate_P[i]) * 1000UL));
if (md_candidate > move_duration)
move_duration = md_candidate;
}
#else
// pre-calculate move speed in millimeter microseconds per step minute for less math in interrupt context
// mm (distance) * 60000000 us/min / step (total_steps) = mm.us per step.min
// note: um (distance) * 60000 == mm * 60000000
// so in the interrupt we must simply calculate
// mm.us per step.min / mm per min (F) = us per step
// break this calculation up a bit and lose some precision because 300,000um * 60000 is too big for a uint32
// calculate this with a uint64 if you need the precision, but it'll take longer so routines with lots of short moves may suffer
// 2^32/6000 is about 715mm which should be plenty
// changed * 10 to * (F_CPU / 100000) so we can work in cpu_ticks rather than microseconds.
// timer.c timer_set() routine altered for same reason
// changed distance * 6000 .. * F_CPU / 100000 to
// distance * 2400 .. * F_CPU / 40000 so we can move a distance of up to 1800mm without overflowing
uint32_t move_duration = ((distance * 2400) / dda->total_steps) * (F_CPU / 40000);
#endif
// similarly, find out how fast we can run our axes.
// do this for each axis individually, as the combined speed of two or more axes can be higher than the capabilities of a single one.
// TODO: instead of calculating c_min directly, it's probably more simple
// to calculate (maximum) move_duration for each axis, like done for
// ACCELERATION_TEMPORAL above. This should make re-calculating the
// allowed F easier.
c_limit = 0;
for (i = X; i < AXIS_COUNT; i++) {
c_limit_calc = (delta_um[i] * 2400L) /
dda->total_steps * (F_CPU / 40000) /
pgm_read_dword(&maximum_feedrate_P[i]);
if (c_limit_calc > c_limit)
c_limit = c_limit_calc;
}
#ifdef ACCELERATION_REPRAP
// c is initial step time in IOclk ticks
dda->c = move_duration / startpoint.F;
if (dda->c < c_limit)
dda->c = c_limit;
dda->end_c = move_duration / dda->endpoint.F;
if (dda->end_c < c_limit)
dda->end_c = c_limit;
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR(",md:%lu,c:%lu"), move_duration, dda->c);
if (dda->c != dda->end_c) {
uint32_t stF = startpoint.F / 4;
uint32_t enF = dda->endpoint.F / 4;
// now some constant acceleration stuff, courtesy of http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
uint32_t ssq = (stF * stF);
uint32_t esq = (enF * enF);
int32_t dsq = (int32_t) (esq - ssq) / 4;
uint8_t msb_ssq = msbloc(ssq);
uint8_t msb_tot = msbloc(dda->total_steps);
// the raw equation WILL overflow at high step rates, but 64 bit math routines take waay too much space
// at 65536 mm/min (1092mm/s), ssq/esq overflows, and dsq is also close to overflowing if esq/ssq is small
// but if ssq-esq is small, ssq/dsq is only a few bits
// we'll have to do it a few different ways depending on the msb locations of each
if ((msb_tot + msb_ssq) <= 30) {
// we have room to do all the multiplies first
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
serial_writechar('A');
dda->n = ((int32_t) (dda->total_steps * ssq) / dsq) + 1;
}
else if (msb_tot >= msb_ssq) {
// total steps has more precision
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
serial_writechar('B');
dda->n = (((int32_t) dda->total_steps / dsq) * (int32_t) ssq) + 1;
}
else {
// otherwise
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
serial_writechar('C');
dda->n = (((int32_t) ssq / dsq) * (int32_t) dda->total_steps) + 1;
}
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR("\n{DDA:CA end_c:%lu, n:%ld, md:%lu, ssq:%lu, esq:%lu, dsq:%lu, msbssq:%u, msbtot:%u}\n"), dda->end_c, dda->n, move_duration, ssq, esq, dsq, msb_ssq, msb_tot);
dda->accel = 1;
}
else
dda->accel = 0;
#elif defined ACCELERATION_RAMPING
dda->c_min = move_duration / dda->endpoint.F;
if (dda->c_min < c_limit) {
dda->c_min = c_limit;
dda->endpoint.F = move_duration / dda->c_min;
}
// Lookahead can deal with 16 bits ( = 1092 mm/s), only.
if (dda->endpoint.F > 65535)
dda->endpoint.F = 65535;
// Acceleration ramps are based on the fast axis, not the combined speed.
dda->rampup_steps =
acc_ramp_len(muldiv(dda->fast_um, dda->endpoint.F, distance),
dda->fast_spm);
if (dda->rampup_steps > dda->total_steps / 2)
dda->rampup_steps = dda->total_steps / 2;
dda->rampdown_steps = dda->total_steps - dda->rampup_steps;
#ifdef LOOKAHEAD
dda->distance = distance;
dda_find_crossing_speed(prev_dda, dda);
// TODO: this should become a reverse-stepping through the existing
// movement queue to allow higher speeds for short moves.
// dda_find_crossing_speed() is required only once.
dda_join_moves(prev_dda, dda);
dda->n = dda->start_steps;
if (dda->n == 0)
dda->c = pgm_read_dword(&c0_P[dda->fast_axis]);
else
dda->c = (pgm_read_dword(&c0_P[dda->fast_axis]) *
int_inv_sqrt(dda->n)) >> 13;
if (dda->c < dda->c_min)
dda->c = dda->c_min;
#else
dda->n = 0;
dda->c = pgm_read_dword(&c0_P[dda->fast_axis]);
#endif
#elif defined ACCELERATION_TEMPORAL
// TODO: calculate acceleration/deceleration for each axis
for (i = X; i < AXIS_COUNT; i++) {
dda->step_interval[i] = 0xFFFFFFFF;
if (dda->delta[i])
dda->step_interval[i] = move_duration / dda->delta[i];
}
dda->c = 0xFFFFFFFF;
dda->axis_to_step = X; // Safety value
for (i = X; i < AXIS_COUNT; i++) {
if (dda->step_interval[i] < dda->c) {
dda->axis_to_step = i;
dda->c = dda->step_interval[i];
}
}
#else
dda->c = move_duration / dda->endpoint.F;
if (dda->c < c_limit)
dda->c = c_limit;
#endif
} /* ! dda->total_steps == 0 */
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
serial_writestr_P(PSTR("] }\n"));
// next dda starts where we finish
memcpy(&startpoint, &dda->endpoint, sizeof(TARGET));
#ifdef LOOKAHEAD
prev_dda = dda;
#endif
}
/*! Start a prepared DDA
\param *dda pointer to entry in dda_queue to start
This function actually begins the move described by the passed DDA entry.
We set direction and enable outputs, and set the timer for the first step from the precalculated value.
We also mark this DDA as running, so other parts of the firmware know that something is happening
Called both inside and outside of interrupts.
*/
void dda_start(DDA *dda) {
// called from interrupt context: keep it simple!
if (DEBUG_DDA && (debug_flags & DEBUG_DDA))
sersendf_P(PSTR("Start: X %lq Y %lq Z %lq F %lu\n"),
dda->endpoint.axis[X], dda->endpoint.axis[Y],
dda->endpoint.axis[Z], dda->endpoint.F);
if ( ! dda->nullmove) {
// get ready to go
psu_timeout = 0;
#ifdef Z_AUTODISABLE
if (dda->delta[Z])
z_enable();
#endif
if (dda->endstop_check)
endstops_on();
// set direction outputs
x_direction(dda->x_direction);
y_direction(dda->y_direction);
z_direction(dda->z_direction);
e_direction(dda->e_direction);
#ifdef DC_EXTRUDER
if (dda->delta[E])
heater_set(DC_EXTRUDER, DC_EXTRUDER_PWM);
#endif
// initialise state variable
move_state.counter[X] = move_state.counter[Y] = move_state.counter[Z] = \
move_state.counter[E] = -(dda->total_steps >> 1);
memcpy(&move_state.steps[X], &dda->delta[X], sizeof(uint32_t) * 4);
move_state.endstop_stop = 0;
#ifdef ACCELERATION_RAMPING
move_state.step_no = 0;
#endif
#ifdef ACCELERATION_TEMPORAL
move_state.time[X] = move_state.time[Y] = \
move_state.time[Z] = move_state.time[E] = 0UL;
#endif
// ensure this dda starts
dda->live = 1;
// set timeout for first step
timer_set(dda->c, 0);
}
// else just a speed change, keep dda->live = 0
current_position.F = dda->endpoint.F;
}
/**
\brief Do per-step movement maintenance.
\param *dda the current move
\details Most important task here is to update the Bresenham algorithm and
to generate step pulses accordingly, this guarantees geometrical accuracy
of the movement. Other tasks, like acceleration calculations, are moved
into dda_clock() as much as possible.
This is called from our timer interrupt every time a step needs to occur.
Keep it as simple and fast as possible, this is most critical for the
achievable step frequency.
Note: it was tried to do this in loops instead of straight, repeating code.
However, this resulted in at least 16% performance loss, no matter
how it was done. On how to measure, see commit "testcases: Add
config.h". On the various tries and measurement results, see commits
starting with "DDA: Move axis calculations into loops, part 6".
*/
void dda_step(DDA *dda) {
#if ! defined ACCELERATION_TEMPORAL
if (move_state.steps[X]) {
move_state.counter[X] -= dda->delta[X];
if (move_state.counter[X] < 0) {
x_step();
move_state.steps[X]--;
move_state.counter[X] += dda->total_steps;
}
}
if (move_state.steps[Y]) {
move_state.counter[Y] -= dda->delta[Y];
if (move_state.counter[Y] < 0) {
y_step();
move_state.steps[Y]--;
move_state.counter[Y] += dda->total_steps;
}
}
if (move_state.steps[Z]) {
move_state.counter[Z] -= dda->delta[Z];
if (move_state.counter[Z] < 0) {
z_step();
move_state.steps[Z]--;
move_state.counter[Z] += dda->total_steps;
}
}
if (move_state.steps[E]) {
move_state.counter[E] -= dda->delta[E];
if (move_state.counter[E] < 0) {
e_step();
move_state.steps[E]--;
move_state.counter[E] += dda->total_steps;
}
}
#endif
#ifdef ACCELERATION_REPRAP
// linear acceleration magic, courtesy of http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
if (dda->accel) {
if ((dda->c > dda->end_c) && (dda->n > 0)) {
uint32_t new_c = dda->c - (dda->c * 2) / dda->n;
if (new_c <= dda->c && new_c > dda->end_c) {
dda->c = new_c;
dda->n += 4;
}
else
dda->c = dda->end_c;
}
else if ((dda->c < dda->end_c) && (dda->n < 0)) {
uint32_t new_c = dda->c + ((dda->c * 2) / -dda->n);
if (new_c >= dda->c && new_c < dda->end_c) {
dda->c = new_c;
dda->n += 4;
}
else
dda->c = dda->end_c;
}
else if (dda->c != dda->end_c) {
dda->c = dda->end_c;
}
// else we are already at target speed
}
#endif
#ifdef ACCELERATION_RAMPING
move_state.step_no++;
#endif
#ifdef ACCELERATION_TEMPORAL
/** How is this ACCELERATION TEMPORAL expected to work?
All axes work independently of each other, as if they were on four
different, synchronized timers. As we have not enough suitable timers,
we have to share one for all axes.
To do this, each axis maintains the time of its last step in
move_state.time[]. This time is updated as the step is done, see early
in dda_step(). To find out which axis is the next one to step, the time
of each axis' next step is compared to the time of the step just done.
Zero means this actually is the axis just stepped, the smallest value > 0
wins.
One problem undoubtedly arising is, steps should sometimes be done at
{almost,exactly} the same time. We trust the timer to deal properly with
very short or even zero periods. If a step can't be done in time, the
timer shall do the step as soon as possible and compensate for the delay
later. In turn we promise here to send a maximum of four such
short-delays consecutively and to give sufficient time on average.
*/
// This is the time which led to this call of dda_step().
move_state.last_time = move_state.time[dda->axis_to_step] +
dda->step_interval[dda->axis_to_step];
do {
uint32_t c_candidate;
enum axis_e i;
if (dda->axis_to_step == X) {
x_step();
move_state.steps[X]--;
move_state.time[X] += dda->step_interval[X];
}
if (dda->axis_to_step == Y) {
y_step();
move_state.steps[Y]--;
move_state.time[Y] += dda->step_interval[Y];
}
if (dda->axis_to_step == Z) {
z_step();
move_state.steps[Z]--;
move_state.time[Z] += dda->step_interval[Z];
}
if (dda->axis_to_step == E) {
e_step();
move_state.steps[E]--;
move_state.time[E] += dda->step_interval[E];
}
unstep();
// Find the next stepper to step.
dda->c = 0xFFFFFFFF;
for (i = X; i < AXIS_COUNT; i++) {
if (move_state.steps[i]) {
c_candidate = move_state.time[i] + dda->step_interval[i] -
move_state.last_time;
if (c_candidate < dda->c) {
dda->axis_to_step = i;
dda->c = c_candidate;
}
}
}
// No stepper to step found? Then we're done.
if (dda->c == 0xFFFFFFFF) {
dda->live = 0;
dda->done = 1;
break;
}
} while (timer_set(dda->c, 1));
#endif /* ACCELERATION_TEMPORAL */
// If there are no steps left or an endstop stop happened, we have finished.
//
// TODO: with ACCELERATION_TEMPORAL this duplicates some code. See where
// dda->live is zero'd, about 10 lines above.
if ((move_state.steps[X] == 0 && move_state.steps[Y] == 0 &&
move_state.steps[Z] == 0 && move_state.steps[E] == 0)
#ifdef ACCELERATION_RAMPING
|| (move_state.endstop_stop && dda->n <= 0)
#endif
) {
dda->live = 0;
dda->done = 1;
#ifdef LOOKAHEAD
// If look-ahead was using this move, it could have missed our activation:
// make sure the ids do not match.
dda->id--;
#endif
#ifdef DC_EXTRUDER
heater_set(DC_EXTRUDER, 0);
#endif
#ifdef Z_AUTODISABLE
// Z stepper is only enabled while moving.
z_disable();
#endif
// No need to restart timer here.
// After having finished, dda_start() will do it.
}
else {
psu_timeout = 0;
#ifndef ACCELERATION_TEMPORAL
timer_set(dda->c, 0);
#endif
}
// turn off step outputs, hopefully they've been on long enough by now to register with the drivers
// if not, too bad. or insert a (very!) small delay here, or fire up a spare timer or something.
// we also hope that we don't step before the drivers register the low- limit maximum speed if you think this is a problem.
unstep();
}
/*! Do regular movement maintenance.
This should be called pretty often, like once every 1 or 2 milliseconds.
Currently, this is checking the endstops and doing acceleration maths. These
don't need to be checked/recalculated on every single step, so this code
can be moved out of the highly time critical dda_step(). At high precision
(slow) searches of the endstop, this function is called more often than
dda_step() anyways.
In the future, arc movement calculations might go here, too. Updating
movement direction 500 times a second is easily enough for smooth and
accurate curves!
*/
void dda_clock() {
DDA *dda;
static DDA *last_dda = NULL;
uint8_t endstop_trigger = 0;
#ifdef ACCELERATION_RAMPING
uint32_t move_step_no, move_c;
int32_t move_n;
uint8_t recalc_speed;
uint8_t current_id ;
#endif
dda = queue_current_movement();
if (dda != last_dda) {
move_state.debounce_count_x =
move_state.debounce_count_z =
move_state.debounce_count_y = 0;
last_dda = dda;
}
if (dda == NULL)
return;
// Caution: we mangle step counters here without locking interrupts. This
// means, we trust dda isn't changed behind our back, which could
// in principle (but rarely) happen if endstops are checked not as
// endstop search, but as part of normal operations.
if (dda->endstop_check && ! move_state.endstop_stop) {
#ifdef X_MIN_PIN
if (dda->endstop_check & 0x01) {
if (x_min() == dda->endstop_stop_cond)
move_state.debounce_count_x++;
else
move_state.debounce_count_x = 0;
endstop_trigger = move_state.debounce_count_x >= ENDSTOP_STEPS;
}
#endif
#ifdef X_MAX_PIN
if (dda->endstop_check & 0x02) {
if (x_max() == dda->endstop_stop_cond)
move_state.debounce_count_x++;
else
move_state.debounce_count_x = 0;
endstop_trigger = move_state.debounce_count_x >= ENDSTOP_STEPS;
}
#endif
#ifdef Y_MIN_PIN
if (dda->endstop_check & 0x04) {
if (y_min() == dda->endstop_stop_cond)
move_state.debounce_count_y++;
else
move_state.debounce_count_y = 0;
endstop_trigger = move_state.debounce_count_y >= ENDSTOP_STEPS;
}
#endif
#ifdef Y_MAX_PIN
if (dda->endstop_check & 0x08) {
if (y_max() == dda->endstop_stop_cond)
move_state.debounce_count_y++;
else
move_state.debounce_count_y = 0;
endstop_trigger = move_state.debounce_count_y >= ENDSTOP_STEPS;
}
#endif
#ifdef Z_MIN_PIN
if (dda->endstop_check & 0x10) {
if (z_min() == dda->endstop_stop_cond)
move_state.debounce_count_z++;
else
move_state.debounce_count_z = 0;
endstop_trigger = move_state.debounce_count_z >= ENDSTOP_STEPS;
}
#endif
#ifdef Z_MAX_PIN
if (dda->endstop_check & 0x20) {
if (z_max() == dda->endstop_stop_cond)
move_state.debounce_count_z++;
else
move_state.debounce_count_z = 0;
endstop_trigger = move_state.debounce_count_z >= ENDSTOP_STEPS;
}
#endif
// If an endstop is definitely triggered, stop the movement.
if (endstop_trigger) {
#ifdef ACCELERATION_RAMPING
// For always smooth operations, don't halt apruptly,
// but start deceleration here.
ATOMIC_START
move_state.endstop_stop = 1;
if (move_state.step_no < dda->rampup_steps) // still accelerating
dda->total_steps = move_state.step_no * 2;
else
// A "-=" would overflow earlier.
dda->total_steps = dda->total_steps - dda->rampdown_steps +
move_state.step_no;
dda->rampdown_steps = move_state.step_no;
ATOMIC_END
// Not atomic, because not used in dda_step().
dda->rampup_steps = 0; // in case we're still accelerating
#else
dda->live = 0;
#endif
endstops_off();
}
} /* ! move_state.endstop_stop */
#ifdef ACCELERATION_RAMPING
// For maths about stepper speed profiles, see
// http://www.embedded.com/design/mcus-processors-and-socs/4006438/Generate-stepper-motor-speed-profiles-in-real-time
// and http://www.atmel.com/images/doc8017.pdf (Atmel app note AVR446)
ATOMIC_START
current_id = dda->id;
move_step_no = move_state.step_no;
// All other variables are read-only or unused in dda_step(),
// so no need for atomic operations.
ATOMIC_END
recalc_speed = 0;
if (move_step_no < dda->rampup_steps) {
#ifdef LOOKAHEAD
move_n = dda->start_steps + move_step_no;
#else
move_n = move_step_no;
#endif
recalc_speed = 1;
}
else if (move_step_no >= dda->rampdown_steps) {
#ifdef LOOKAHEAD
move_n = dda->total_steps - move_step_no + dda->end_steps;
#else
move_n = dda->total_steps - move_step_no;
#endif
recalc_speed = 1;
}
if (recalc_speed) {
if (move_n == 0)
move_c = pgm_read_dword(&c0_P[dda->fast_axis]);
else
// Explicit formula: c0 * (sqrt(n + 1) - sqrt(n)),
// approximation here: c0 * (1 / (2 * sqrt(n))).
// This >> 13 looks odd, but is verified with the explicit formula.
move_c = (pgm_read_dword(&c0_P[dda->fast_axis]) *
int_inv_sqrt(move_n)) >> 13;
// TODO: most likely this whole check is obsolete. It was left as a
// safety margin, only. Rampup steps calculation should be accurate
// now and give the requested target speed within a few percent.
if (move_c < dda->c_min) {
// We hit max speed not always exactly.
move_c = dda->c_min;
// This is a hack which deals with movements with an unknown number of
// acceleration steps. dda_create() sets a very high number, then,
// but we don't want to re-calculate all the time.
// This hack doesn't work with lookahead.
#ifndef LOOKAHEAD
dda->rampup_steps = move_step_no;
dda->rampdown_steps = dda->total_steps - dda->rampup_steps;
#endif
}
// Write results.
ATOMIC_START
/**
Apply new n & c values only if dda didn't change underneath us. It
is possible for dda to be modified since fetching values in the
ATOMIC above, e.g. when a new dda becomes live.
In case such a change happened, values in the new dda are more
recent than our calculation here, anyways.
*/
if (current_id == dda->id) {
dda->c = move_c;
dda->n = move_n;
}
ATOMIC_END
}
#endif
}
/// update global current_position struct
void update_current_position() {
DDA *dda = &movebuffer[mb_tail];
enum axis_e i;
// Use smaller values to adjust to avoid overflow in later calculations,
// (STEPS_PER_M_X / 1000) is a bit inaccurate for low STEPS_PER_M numbers.
static const axes_uint32_t PROGMEM steps_per_mm_P = {
((STEPS_PER_M_X + 500) / 1000),
((STEPS_PER_M_Y + 500) / 1000),
((STEPS_PER_M_Z + 500) / 1000),
((STEPS_PER_M_E + 500) / 1000)
};
if (queue_empty()) {
for (i = X; i < AXIS_COUNT; i++) {
current_position.axis[i] = startpoint.axis[i];
}
}
else if (dda->live) {
for (i = X; i < AXIS_COUNT; i++) {
current_position.axis[i] = dda->endpoint.axis[i] -
(int32_t)get_direction(dda, i) *
// Should be: move_state.steps[i] * 1000000 / steps_per_m_P[i])
// but steps[i] can be like 1000000 already, so we'd overflow.
// Unfortunately, using muldiv() overwhelms the compiler.
// Also keep the parens around this term, else results go wrong.
((move_state.steps[i] * 1000) / pgm_read_dword(&steps_per_mm_P[i]));
}
if (dda->endpoint.e_relative)
current_position.axis[E] =
(move_state.steps[E] * 1000) / pgm_read_dword(&steps_per_mm_P[E]);
// current_position.F is updated in dda_start()
}
}