-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
89 lines (72 loc) · 2.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import functools
from sample_factory.algo.utils.context import global_model_factory
from sample_factory.cfg.arguments import parse_full_cfg, parse_sf_args
from sample_factory.enjoy import enjoy
from sample_factory.envs.env_utils import register_env
from sample_factory.train import run_rl
from sf_examples.vizdoom.doom.doom_model import make_vizdoom_encoder
from sf_examples.vizdoom.doom.doom_params import (add_doom_env_args,
doom_override_defaults)
from sf_examples.vizdoom.doom.doom_utils import (DOOM_ENVS,
make_doom_env_from_spec)
def register_vizdoom_envs():
for env_spec in DOOM_ENVS:
make_env_func = functools.partial(make_doom_env_from_spec, env_spec)
register_env(env_spec.name, make_env_func)
def register_vizdoom_models():
global_model_factory().register_encoder_factory(make_vizdoom_encoder)
def register_vizdoom_components():
register_vizdoom_envs()
register_vizdoom_models()
# Create a config from command line args
def parse_vizdoom_cfg(argv=None, evaluation=False):
parser, _ = parse_sf_args(argv=argv, evaluation=evaluation)
# Parameters specific to Doom envs
add_doom_env_args(parser)
# Override Doom default values for algo parameters
doom_override_defaults(parser)
# Second parsing pass yields the final configuration
final_cfg = parse_full_cfg(parser, argv)
return final_cfg
def main():
register_vizdoom_components()
# Select the environment to train
env = "doom_health_gathering_supreme"
# Performance config
n_workers = 12
n_envs_per_worker = 8
# Train hyperparameters
n_steps = 100000000
# Full list of parameters with description:
# https://www.samplefactory.dev/02-configuration/cfg-params/
# Create the experiment config
cfg = parse_vizdoom_cfg(
argv=[
f"--env={env}",
f"--num_workers={n_workers}",
f"--num_envs_per_worker={n_envs_per_worker}",
f"--train_for_env_steps={n_steps}",
"--train_dir=./runs",
]
)
# Train
run_rl(cfg)
# Insert the HuggingFace username to upload the model to the hub
hf_username = "chavicoski"
cfg = parse_vizdoom_cfg(
argv=[
f"--env={env}",
"--num_workers=1",
"--save_video",
"--no_render",
"--max_num_episodes=10",
"--max_num_frames=100000",
"--push_to_hub",
"--train_dir=./runs",
f"--hf_repository={hf_username}/vizdoom_health_gathering_supreme",
],
evaluation=True,
)
enjoy(cfg)
if __name__ == "__main__":
main()