-
Notifications
You must be signed in to change notification settings - Fork 246
/
Copy pathprediction_test.py
76 lines (65 loc) · 2.5 KB
/
prediction_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
from colorama import Fore
from predictions import predict
# load images to predict from paths
# .... / elbow1.jpg
# Hand fractured -- elbow2.png
# / / \ .....
# test - Elbow ------
# \ \ / elbow1.png
# Shoulder normal -- elbow2.jpg
# .... \
#python prediction_test.py
def load_path(path):
dataset = []
for body in os.listdir(path):
body_part = body
path_p = path + '/' + str(body)
for lab in os.listdir(path_p):
label = lab
path_l = path_p + '/' + str(lab)
for img in os.listdir(path_l):
img_path = path_l + '/' + str(img)
dataset.append(
{
'body_part': body_part,
'label': label,
'image_path': img_path,
'image_name': img
}
)
return dataset
categories_parts = ["Elbow", "Hand", "Shoulder"]
categories_fracture = ['fractured', 'normal']
def reportPredict(dataset):
total_count = 0
part_count = 0
status_count = 0
print(Fore.YELLOW +
'{0: <28}'.format('Name') +
'{0: <14}'.format('Part') +
'{0: <20}'.format('Predicted Part') +
'{0: <20}'.format('Status') +
'{0: <20}'.format('Predicted Status'))
for img in dataset:
body_part_predict = predict(img['image_path'])
fracture_predict = predict(img['image_path'], body_part_predict)
if img['body_part'] == body_part_predict:
part_count = part_count + 1
if img['label'] == fracture_predict:
status_count = status_count + 1
color = Fore.GREEN
else:
color = Fore.RED
print(color +
'{0: <28}'.format(img['image_name']) +
'{0: <14}'.format(img['body_part']) +
'{0: <20}'.format(body_part_predict) +
'{0: <20}'.format((img['label'])) +
'{0: <20}'.format(fracture_predict))
print(Fore.BLUE + '\npart acc: ' + str("%.2f" % (part_count / len(dataset) * 100)) + '%')
print(Fore.BLUE + 'status acc: ' + str("%.2f" % (status_count / len(dataset) * 100)) + '%')
return
THIS_FOLDER = os.path.dirname(os.path.abspath(__file__))
test_dir = THIS_FOLDER + '/test/'
reportPredict(load_path(test_dir))