-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
187 lines (169 loc) · 8.01 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import re
import json
import urllib.parse
import urllib.request
from operator import attrgetter, itemgetter
from tqdm import tqdm
from natsort import natsorted
arxiv_prefix = 'https://arxiv.org/abs/'
arxiv_prefix_len = len(arxiv_prefix)
github_prefix = 'https://github.com/'
github_prefix_len = len(github_prefix)
arxiv_papers = set()
def get_and_sort_meta_info(json_file):
with open(json_file) as f:
meta_info = json.load(f)
meta_info = natsorted(meta_info, key=itemgetter('paper_link'))
with open(json_file, 'w') as f:
f.write(json.dumps(meta_info, indent=4))
return meta_info
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.__dict__ = self
def find_nth(haystack, needle, n):
start = haystack.find(needle)
while start >= 0 and n > 1:
start = haystack.find(needle, start+len(needle))
n -= 1
return start
def fancy_code(code, no_attrs=True):
if no_attrs:
attrs = ''
else:
attrs = []
if 'unofficial' in code:
attrs.append('unofficial')
else:
if 'pretrained' in code and not code['pretrained']:
attrs.append('not pretrained')
if 'load_pretrained' in code:
attrs.append('load pretrained')
if 'pretrained' in code and 'unofficial' in code:
attrs.append('pretrained')
if 'email_for_pretrained' in code:
attrs.append('email for pretrained')
if 'no_training_code' in code:
attrs.append('no training code')
if len(attrs) == 0:
attrs = ''
else:
attrs = '({})'.format(', '.join(attrs))
if code['link'].startswith(github_prefix):
tmp = code['link'][github_prefix_len:]
if tmp.endswith('/'):
tmp = tmp[:-1]
if len(re.findall('/', tmp)) > 2:
tmp = tmp[:find_nth(tmp, '/', 2)]
github_stars = ' ![](https://img.shields.io/github/stars/{}.svg?style=social )'.format(tmp)
else:
github_stars = ''
return '[{training_language}]({code_link} ){attrs}{github_stars}'.format(
training_language=code['language'], code_link=code['link'], attrs=attrs, github_stars=github_stars)
def query_semantic_scholar(query):
if query == '':
return 'N/A', '-'
try:
global arxiv_papers
if query in arxiv_papers:
raise ValueError('Duplicate Paper {}'.format(query))
arxiv_papers.add(query)
res = json.loads(urllib.request.urlopen("https://api.semanticscholar.org/v1/paper/" + query).read())
count = len(res['citations'])
return (str(count) if count < 999 else '999+'), str(res['year']) + '/??'
except:
return 'N/A', '-'
def fetch_common_parts(paper):
is_arxiv = paper['paper_link'].startswith(arxiv_prefix)
if is_arxiv:
arxiv_id = paper['paper_link'][arxiv_prefix_len:]
arxiv_date = arxiv_id.split('.')[0]
date_part = '20' + arxiv_date[:2] + '/' + arxiv_date[2:]
citation_part, _ = query_semantic_scholar('arXiv:{}'.format(arxiv_id))
else:
citation_part, date_part = query_semantic_scholar(paper.get('doi', paper.get('s2_paper_id', '')))
paper_part = '[{paper_title}]({paper_link})'.format(paper_title=paper['paper_title'],
paper_link=paper['paper_link'])
return citation_part, date_part, paper_part
def generate_word_embedding_table():
header = ['|date|paper|citation count|training code|pretrained models|',
'|:---:|:---:|:---:|:---:|:---:|']
generated_lines = []
meta_info = get_and_sort_meta_info('word-embedding.json')
for paper in tqdm(meta_info, desc='word embedding'):
citation_part, date_part, paper_part = fetch_common_parts(paper)
if 'code' in paper:
training_code_part = fancy_code(paper['code'][0])
else:
training_code_part = '-'
pretrained_part = '-' if 'name' not in paper else '[{name}]({pretrained_link} ){broken_link}' \
.format(name=paper['name'], pretrained_link=paper['pretrained_link'],
broken_link='(broken)' if paper.get('broken_link', False) else '')
generated_lines.append(
AttrDict(date_part=date_part, paper_part=paper_part,
training_code_part=training_code_part,
pretrained_part=pretrained_part, citation_part=citation_part))
generated_lines = sorted(generated_lines, key=attrgetter('date_part', 'citation_part'))
generated_lines = [
'|{date_part}|{paper_part}|{citation_part}|{training_code_part}|{pretrained_part}|'.format(**x) for x in
generated_lines]
return '\n'.join(header + generated_lines)
def generate_contextualized_table():
header = ['|date|paper|citation count|code|pretrained models|',
'|:---:|:---:|:---:|:---:|:---:|']
generated_lines = []
meta_info = get_and_sort_meta_info('contextualized.json')
for paper in tqdm(meta_info, desc='contextualized'):
citation_part, date_part, paper_part = fetch_common_parts(paper)
if 'code' in paper:
training_code_part = '<br>'.join([fancy_code(code) for code in paper['code']])
else:
training_code_part = '-'
if 'pretrained_models' in paper:
if len(paper['pretrained_models']) == 1:
pretrained_models = '[{name}]({pretrained_link} )'.format(name=paper['model_name'],
pretrained_link=paper['pretrained_models'][0][
'link'])
else:
pretrained_links = ', '.join(
['[{name}]({link})'.format(name=x['name'], link=x['link']) for x in paper['pretrained_models']])
pretrained_models = '{name}({pretrained_link})'.format(name=paper['model_name'],
pretrained_link=pretrained_links)
else:
pretrained_models = '-'
generated_lines.append(
AttrDict(date_part=date_part, paper_part=paper_part, training_code_part=training_code_part,
pretrained_models=pretrained_models, citation_part=citation_part))
generated_lines = sorted(generated_lines, key=attrgetter('date_part', 'citation_part'))
generated_lines = [
'|{date_part}|{paper_part}|{citation_part}|{training_code_part}|{pretrained_models}|'.format(**x) for x in
generated_lines]
return '\n'.join(header + generated_lines)
def generate_encoder_table():
header = ['|date|paper|citation count|code|model_name|',
'|:---:|:---:|:---:|:---:|:---:|']
generated_lines = []
meta_info = get_and_sort_meta_info('encoder.json')
for paper in tqdm(meta_info, 'encoder'):
citation_part, date_part, paper_part = fetch_common_parts(paper)
if 'code' in paper:
training_code_part = '<br>'.join([fancy_code(code) for code in paper['code']])
else:
training_code_part = '-'
model_name = paper['name']
generated_lines.append(
AttrDict(date_part=date_part, paper_part=paper_part, training_code_part=training_code_part,
model_name=model_name, citation_part=citation_part))
generated_lines = sorted(generated_lines, key=attrgetter('date_part', 'citation_part'))
generated_lines = [
'|{date_part}|{paper_part}|{citation_part}|{training_code_part}|{model_name}|'.format(**x) for x in
generated_lines]
return '\n'.join(header + generated_lines)
if __name__ == '__main__':
with open('README_BASE.md', 'r') as f:
readme = f.read()
readme = readme.replace('{{{word-embedding-table}}}', generate_word_embedding_table())
readme = readme.replace('{{{contextualized-table}}}', generate_contextualized_table())
readme = readme.replace('{{{encoder-table}}}', generate_encoder_table())
with open('README.md', 'w') as f:
f.write(readme)