-
Notifications
You must be signed in to change notification settings - Fork 5
/
embedding.py
65 lines (48 loc) · 2.2 KB
/
embedding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# -*- coding: utf-8 -*-
# Copyright 2021 Zhang, Chen. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# @since 2021/5/29 14:32
# @author Zhang, Chen (ChansonZhang)
# @email [email protected]
import pandas as pd
import torch
import transformers
import numpy as np
def embed_and_save(sentences: pd.Series, file: str):
model_class, tokenizer_class, pretrained_weights = (
transformers.DistilBertModel, transformers.DistilBertTokenizer, 'distilbert-base-uncased')
# Want BERT instead of distilBERT? Uncomment the following line:
# model_class, tokenizer_class, pretrained_weights = (ppb.BertModel, ppb.BertTokenizer, 'bert-base-uncased')
# Load pretrained model/tokenizer
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
model = model_class.from_pretrained(pretrained_weights)
tokenized = sentences.apply((lambda x: tokenizer.encode(x, add_special_tokens=True)))
max_len = 0
for i in tokenized.values:
if len(i) > max_len:
max_len = len(i)
padded = np.array([i + [0] * (max_len - len(i)) for i in tokenized.values])
print(padded.shape)
attention_mask = np.where(padded != 0, 1, 0)
print(attention_mask.shape)
input_ids = torch.tensor(padded)
attention_mask = torch.tensor(attention_mask)
with torch.no_grad():
last_hidden_states: torch.Tensor = model(input_ids, attention_mask=attention_mask).last_hidden_state
print(last_hidden_states.shape)
features: np.ndarray = last_hidden_states[:, 0, :].numpy()
print(features.shape)
features.dump(file)
print("embedding saved at {}".format(file))