forked from zippiehq/rv32i-to-bitvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.ts
842 lines (735 loc) · 29.1 KB
/
main.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
import { Instruction, parseInstruction } from "./instructionParser";
import * as elfinfo from "elfinfo";
import crypto from "crypto";
import fs from "fs";
import * as bitvm from "./bitvm";
/* memory layout
0 = always 0
4..4*32 = x1..x32
code page has been replaced with 32-bit jump offsets into bitvm instead of code
*/
export interface BitVMOpcode {
opcode: bitvm.Instruction;
pc?: number;
label?: string;
find_label?: string;
find_target?: string; // addressA, addressB, or addressC -- where to write resolved label to in instruction
comment?: string;
}
export interface Context {
codepage: Buffer;
code_addr: number;
datapage: Buffer[];
data_addr: number[];
}
function reg2mem(reg: number) {
return reg * 4; // in future, * 4
}
function tmp() { return 33 * 4; }
function tmp2() { return 34 * 4; }
function tmp3() { return 35 * 4; }
function emitBitvmOp(opcodes: BitVMOpcode[], op: number, addressA: number, addressB: number, addressC: number) {
opcodes.push({ opcode: new bitvm.Instruction(op, addressA, addressB, addressC) });
}
function emitADD(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitADDI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), imm, reg2mem(rd));
}
}
function emitSUB(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_SUB, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitXOR(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_XOR, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitXORI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_XORI, reg2mem(rs1), imm, reg2mem(rd));
}
}
function emitAND(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_AND, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitANDI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rs1), imm, reg2mem(rd));
}
}
function emitOR(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitORI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ORI, reg2mem(rs1), imm, reg2mem(rd));
}
}
function emitJAL(opcodes: BitVMOpcode[], rd: number, imm: number, riscv_pc: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), riscv_pc + 4, reg2mem(rd));
}
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), reg2mem(0), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitLBU(opcodes: BitVMOpcode[], rd: number, rs1: number, offset: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0xFF, reg2mem(rd)); // just to be sure someone didn't sneak in a uint32 value instead of a bit
}
}
function emitLH(opcodes: BitVMOpcode[], rd: number, rs1: number, offset: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0xFF, reg2mem(rd)); // just to be sure someone didn't sneak in a uint32 value instead of a bit
// next
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 1, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), tmp2());
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2()); // just to be sure someone didn't sneak in a uint32 value instead of a byte
// shift 8
for (let i = 0; i < 1; i++) {
emitBitvmOp(opcodes, bitvm.ASM_LSHIFT8, tmp2(), tmp2(), tmp2());
}
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp2(), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0x8000, tmp()); // get MSB
emitBitvmOp(opcodes, bitvm.ASM_ADD, tmp(), tmp(), tmp()); // lshift
emitBitvmOp(opcodes, bitvm.ASM_SUB, 0, tmp(), tmp()); //
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp(), reg2mem(rd));
}
}
function emitLB(opcodes: BitVMOpcode[], rd: number, rs1: number, offset: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), reg2mem(rd));
// Load can return up to 32-bit
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0xFF, reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0x80, tmp()); // get MSB
emitBitvmOp(opcodes, bitvm.ASM_ADD, tmp(), tmp(), tmp()); // lshift
emitBitvmOp(opcodes, bitvm.ASM_SUB, 0, tmp(), tmp()); //
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp(), reg2mem(rd));
}
}
function emitLHU(opcodes: BitVMOpcode[], rd: number, rs1: number, offset: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0xFF, reg2mem(rd)); // just to be sure someone didn't sneak in a uint32 value instead of a bit
// next
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 1, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), tmp2());
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2()); // just to be sure someone didn't sneak in a uint32 value instead of a byte
// shift 8
for (let i = 0; i < 1; i++) {
emitBitvmOp(opcodes, bitvm.ASM_LSHIFT8, tmp2(), tmp2(), tmp2());
}
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp2(), reg2mem(rd));
}
}
function emitLW(opcodes: BitVMOpcode[], rd: number, rs1: number, offset: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset + 3, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0xFF, reg2mem(rd)); // just to be sure someone didn't sneak in a uint32 value instead of a bit
// continue from here
for(let i = 0; i < 3; i++){
emitBitvmOp(opcodes, bitvm.ASM_SUBI, tmp(), 1, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), tmp2());
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2()); // just to be sure someone didn't sneak in a uint32 value instead of a bit
emitBitvmOp(opcodes, bitvm.ASM_LSHIFT8, reg2mem(rd), reg2mem(rd), reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp2(), reg2mem(rd));
}
}
}
function emitSB(opcodes: BitVMOpcode[], rs1: number, rs2: number, offset: number) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rs2), 0, tmp2());
// first byte
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2());
emitBitvmOp(opcodes, bitvm.ASM_STORE, tmp2(), tmp(), NaN);
}
function emitSH(opcodes: BitVMOpcode[], rs1: number, rs2: number, offset: number) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp()); // tmp is now rs1 + offset which is the memroy point where we want to store rs2[0:15]
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rs2), 0, tmp2()); // Move rs2 to tmp2, now we want to store tmp2 to the memory location in tmp.
// first byte
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2()); // we get the last 8 bit and store it in tmp2
emitBitvmOp(opcodes, bitvm.ASM_STORE, tmp2(), tmp(), NaN); // Finally wrote the last byte, now we have to write rs2[9:15]
// second byte
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 1, tmp()); // We move 1 byte to write the second half.
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rs2), 0, tmp2()); // rs2 is the value we want to write, moved it to tmp2
// shift right 8
for (let i = 0; i < 1; i++) {
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT8, tmp2(), tmp2(), tmp2());
}
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp2());
emitBitvmOp(opcodes, bitvm.ASM_STORE, tmp2(), tmp(), NaN);
}
function emitSW(opcodes: BitVMOpcode[], rs1: number, rs2: number, offset: number) {
// Calculate base address and store it in tmp() for memory access
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), offset, tmp());
// Temporarily store rs2 value for manipulation
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rs2), 0, tmp2());
for (let i = 0; i < 4; i++) {
// Isolate the current byte from tmp2() and store it
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0xFF, tmp3()); // Use a new tmp register if necessary
emitBitvmOp(opcodes, bitvm.ASM_STORE, tmp3(), tmp(), NaN);
// Prepare for the next byte unless it's the last byte
if (i < 3) {
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT8, tmp2(), tmp2(), tmp2());
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 1, tmp()); // Increment address for next byte
}
}
}
function emitJALR(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number, riscv_pc: number) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), imm, tmp());
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp(), 0xFFFFFFFE, tmp());
emitBitvmOp(opcodes, bitvm.ASM_LOAD, NaN, tmp(), tmp());
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), riscv_pc + 4, reg2mem(rd));
}
emitBitvmOp(opcodes, bitvm.ASM_JMP, tmp(), 0, 0);
}
function emitAUIPC(opcodes: BitVMOpcode[], rd: number, imm: number, riscv_pc: number) {
if (rd != 0) {
// imm is already << 12'ed
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), (riscv_pc + imm) & 0xFFFFFFFF, reg2mem(rd));
}
}
function emitLUI(opcodes: BitVMOpcode[], rd: number, insn: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), ((insn & 0xfffff000) >>> 0), reg2mem(rd));
}
}
function emitBEQ(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(rs1), reg2mem(rs2), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitBNE(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BNE, reg2mem(rs1), reg2mem(rs2), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitSLLI(opcodes:BitVMOpcode[], rd: number, rs1: number, imm:number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, reg2mem(rd));
// Calculate the number of times to apply ASM_LSHIFT8 based on the immediate value.
const shiftsBy8 = Math.floor(imm / 8);
for (let i = 0; i < shiftsBy8; i++) {
emitBitvmOp(opcodes, bitvm.ASM_LSHIFT8, reg2mem(rd), 0, reg2mem(rd));
}
// Calculate any remaining shifts that are less than 8 bits.
const remainingShifts = imm % 8;
for (let i = 0; i < remainingShifts; i++) {
emitBitvmOp(opcodes, bitvm.ASM_ADD, reg2mem(rd), reg2mem(rd), reg2mem(rd));
}
}
}
function emitSRLI(opcodes:BitVMOpcode[], rd: number, rs1: number, imm:number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, reg2mem(rd));
// Calculate the number of times to apply ASM_RSHIFT8 based on the immediate value.
const shiftsBy8 = Math.floor(imm / 8);
for (let i = 0; i < shiftsBy8; i++) {
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT8, reg2mem(rd), 0, reg2mem(rd));
}
// Calculate any remaining shifts that are less than 8 bits.
const remainingShifts = imm % 8;
for (let i = 0; i < remainingShifts; i++) {
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT1, reg2mem(rd), 0, reg2mem(rd));
}
}
}
function emitSRAI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, reg2mem(rd));
for (let i = 0; i < imm; i++) {
emitBitvmOp(opcodes, bitvm.ASM_ANDI, reg2mem(rd), 0x80000000, tmp3());
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT1, reg2mem(rd), 0, reg2mem(rd));
emitBitvmOp(opcodes, bitvm.ASM_OR, reg2mem(rd), tmp3(), reg2mem(rd));
}
}
}
function emitSLT(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_SLT, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitSLTU(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_SLTU, reg2mem(rs1), reg2mem(rs2), reg2mem(rd));
}
}
function emitSLTIU(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), imm, tmp());
emitBitvmOp(opcodes, bitvm.ASM_SLTU, reg2mem(rs1), tmp(), reg2mem(rd));
}
}
function emitSLTI(opcodes: BitVMOpcode[], rd: number, rs1: number, imm: number) {
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), imm, tmp());
emitBitvmOp(opcodes, bitvm.ASM_SLT, reg2mem(rs1), tmp(), reg2mem(rd));
}
}
function emitBLT(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
emitBitvmOp(opcodes, bitvm.ASM_SLT, reg2mem(rs1), reg2mem(rs2), tmp());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BNE, tmp(), reg2mem(0), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitBLTU(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
emitBitvmOp(opcodes, bitvm.ASM_SLTU, reg2mem(rs1), reg2mem(rs2), tmp());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BNE, tmp(), reg2mem(0), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitBGE(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
emitBitvmOp(opcodes, bitvm.ASM_SLT, reg2mem(rs1), reg2mem(rs2), tmp());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, tmp(), reg2mem(0), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitBGEU(opcodes: BitVMOpcode[], rs1: number, rs2: number, imm: number, riscv_pc: number) {
emitBitvmOp(opcodes, bitvm.ASM_SLTU, reg2mem(rs1), reg2mem(rs2), tmp());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, tmp(), reg2mem(0), 0), find_label: "_riscv_pc_" + ((riscv_pc + imm) & 0xFFFFFFFF), find_target: "addressC" });
}
function emitECALL(opcodes: BitVMOpcode[]) {
// tmp() acts as our status buffer, 0 = weird shit 1 = OK, 2 = not OK
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), 1, tmp());
// if x10 / a0 is 0, finish program
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(10), reg2mem(0), 0), find_label: "_program_end", find_target: "addressC", comment: "ECALL" });
}
function emitEBREAK(opcodes: BitVMOpcode[]) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(0), 2, tmp());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), reg2mem(0), 0), find_label: "_program_end", find_target: "addressC" });
}
function emitSRA(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
const uniq = crypto.randomBytes(32).toString("hex");
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, tmp()); // result
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs2), 0, tmp2()); // shift amount
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0x1F, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SRA_" + uniq + "_loop_start" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), tmp2(), 0), find_label: "_SRA_" + uniq + "_loop_end", find_target: "addressC" });
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp(), 0x80000000, tmp3());
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT1, tmp(), 0, tmp());
emitBitvmOp(opcodes, bitvm.ASM_OR, tmp(), tmp3(), tmp()); // add MSB
emitBitvmOp(opcodes, bitvm.ASM_SUBI, tmp2(), 1, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), reg2mem(0), 0), find_label: "_SRA_" + uniq + "_loop_start", find_target: "addressC" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SRA_" + uniq + "_loop_end" });
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 0, reg2mem(rd)); // result
}
}
function emitSRL(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
const uniq = crypto.randomBytes(32).toString("hex");
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, tmp()); // result
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs2), 0, tmp2()); // shift amount
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0x1F, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SRL_" + uniq + "_loop_start" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), tmp2(), 0), find_label: "_SRL_" + uniq + "_loop_end", find_target: "addressC" });
emitBitvmOp(opcodes, bitvm.ASM_RSHIFT1, tmp(), 0, tmp());
emitBitvmOp(opcodes, bitvm.ASM_SUBI, tmp2(), 1, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), reg2mem(0), 0), find_label: "_SRL_" + uniq + "_loop_start", find_target: "addressC" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SRL_" + uniq + "_loop_end" });
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 0, reg2mem(rd)); // result
}
}
function emitSLL(opcodes: BitVMOpcode[], rd: number, rs1: number, rs2: number) {
const uniq = crypto.randomBytes(32).toString("hex");
if (rd != 0) {
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs1), 0, tmp()); // result
emitBitvmOp(opcodes, bitvm.ASM_ADDI, reg2mem(rs2), 0, tmp2()); // shift amount
emitBitvmOp(opcodes, bitvm.ASM_ANDI, tmp2(), 0x1F, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SLL_" + uniq + "_loop_start" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), tmp2(), 0), find_label: "_SLL_" + uniq + "_loop_end", find_target: "addressC" });
emitBitvmOp(opcodes, bitvm.ASM_ADD, tmp(), tmp(), tmp());
emitBitvmOp(opcodes, bitvm.ASM_SUBI, tmp2(), 1, tmp2());
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_BEQ, reg2mem(0), reg2mem(0), 0), find_label: "_SLL_" + uniq + "_loop_start", find_target: "addressC" });
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_SLL_" + uniq + "_loop_end" });
emitBitvmOp(opcodes, bitvm.ASM_ADDI, tmp(), 0, reg2mem(rd)); // result
}
}
function emitInstr(opcodes: BitVMOpcode[], pc: number, parsed: Instruction, rawInstr: number) {
switch (parsed.instructionName) {
case "LW": {
emitLW(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "LBU": {
emitLBU(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "LB": {
emitLB(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "LH": {
emitLH(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "LHU": {
emitLHU(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "SW": {
emitSW(
opcodes,
parsed.rs1,
parsed.rs2,
parsed.imm
);
break;
}
case "SB": {
emitSB(
opcodes,
parsed.rs1,
parsed.rs2,
parsed.imm
);
break;
}
case "SH": {
emitSH(
opcodes,
parsed.rs1,
parsed.rs2,
parsed.imm
);
break;
}
case "SLL":
emitSLL(
opcodes,
parsed.rd,
parsed.rs1,
parsed.rs2
);
break;
case "SRL": {
emitSRL(
opcodes,
parsed.rd,
parsed.rs1,
parsed.rs2
);
break;
}
case "SLLI": {
emitSLLI(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "SRLI": {
emitSRLI(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "SRA": {
emitSRA(opcodes, parsed.rd, parsed.rs1, parsed.rs2);
break;
}
case "SRAI": {
emitSRAI(opcodes, parsed.rd, parsed.rs1, parsed.imm);
break;
}
// arithmetic
case "ADD": {
emitADD(opcodes, parsed.rd, parsed.rs1, parsed.rs2);
break;
}
case "ADDI": {
emitADDI(opcodes, parsed.rd, parsed.rs1, parsed.imm);
break;
}
case "SUB": {
emitSUB(opcodes, parsed.rd, parsed.rs1, parsed.rs2);
break;
}
case "LUI": {
emitLUI(opcodes, parsed.rd, parsed.unparsedInstruction);
break;
}
case "AUIPC": {
emitAUIPC(opcodes, parsed.rd, parsed.imm, pc);
break;
}
case "OR": {
emitOR(
opcodes,
parsed.rd,
parsed.rs1,
parsed.rs2
);
break;
}
case "XOR": {
emitXOR(
opcodes,
parsed.rd,
parsed.rs1,
parsed.rs2
);
break;
}
case "AND": {
emitAND(
opcodes,
parsed.rd,
parsed.rs1,
parsed.rs2
);
break;
}
case "ORI": {
emitORI
(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "XORI": {
emitXORI(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
case "ANDI": {
emitANDI(
opcodes,
parsed.rd,
parsed.rs1,
parsed.imm
);
break;
}
// compare
case "SLT": {
emitSLT(opcodes, parsed.rd, parsed.rs1, parsed.rs2);
break;
}
case "SLTU": {
emitSLTU(opcodes, parsed.rd, parsed.rs1, parsed.rs2);
break;
}
case "SLTI": {
emitSLTI(opcodes, parsed.rd, parsed.rs1, parsed.imm);
break;
}
case "SLTIU": {
emitSLTIU(opcodes, parsed.rd, parsed.rs1, parsed.imm);
break;
}
// branches
case "BNE":
emitBNE(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
case "BEQ":
emitBEQ(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
case "BLT":
emitBLT(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
case "BGE":
emitBGE(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
case "BLTU":
emitBLTU(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
case "BGEU":
emitBGEU(opcodes, parsed.rs1, parsed.rs2, parsed.imm, pc);
break;
// jump & link
case "JAL": {
emitJAL(opcodes, parsed.rd, parsed.imm, pc);
break;
}
case "JALR": {
emitJALR(opcodes, parsed.rd, parsed.rs1, parsed.imm, pc);
break;
}
// Synch (do nothing, single-thread)
case "FENCE":
case "FENCE.I":
break;
// environment
case "EBREAK":
emitEBREAK(opcodes);
break;
case "CSRRW":
emitEBREAK(opcodes);
break;
case "UNKNOWN":
console.log("Got unknown opcode, ignoring, pc = 0x" + pc.toString(16));;
break;
case "ECALL":
emitECALL(opcodes);
break;
default:
throw new Error("Unknown instruction: " + parsed.instructionName + " " + JSON.stringify(parsed) + " " + rawInstr.toString(16) + " pc = 0x" + pc.toString(16));
}
}
function riscvToBitVM(pc_base: number, buf: Buffer): BitVMOpcode[] {
let opcodes: BitVMOpcode[] = [];
for (let i = 0; i < buf.length; i += 4) {
const instr = buf.readUInt32LE(i);
const parsed = parseInstruction(instr);
const instrName = parsed.instructionName;
// null-op for labels
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_riscv_pc_" + (pc_base + i), comment: JSON.stringify(parsed) });
emitInstr(opcodes, pc_base + i, parsed, instr);
}
opcodes.push({ opcode: new bitvm.Instruction(bitvm.ASM_ADDI, reg2mem(0), reg2mem(0), 0), label: "_program_end" });
return opcodes;
}
/* phases:
transpile
add program counters
resolve labels to pc (one instruction per pc location)
emit instruction list & memory contents
run in bitvm
*/
async function transpile(fileContents: Buffer) {
const elfInfo = await elfinfo.open(fileContents);
if (!elfInfo || !elfInfo.elf) {
throw new Error("No ELF");
}
let context: Context = {
codepage: Buffer.alloc(0),
code_addr: 0,
datapage: [],
data_addr: []
}
for (let i = 0; i < elfInfo.elf.segments.length; i++) {
const seg = elfInfo.elf.segments[i];
if (
seg.vaddr !== 0 &&
seg.typeDescription == "Load" &&
Number(seg.vaddr) < 0x110000
) {
// ^^^^ XXX this is really lazy
if (Number(seg.vaddr) % 4096 !== 0) {
throw new Error("Segment should be 4K-aligned");
}
const data = fileContents.slice(seg.offset, seg.offset + seg.filesz);
context.codepage = data;
context.code_addr = Number(seg.vaddr)
} else if (
seg.vaddr !== 0 &&
seg.typeDescription == "Load" &&
Number(seg.vaddr) >= 0x110000
) {
if (Number(seg.vaddr) % 4096 !== 0) {
throw new Error("Segment should be 4K-aligned");
}
const data = fileContents.slice(seg.offset, seg.offset + seg.filesz);
context.datapage.push(data);
context.data_addr.push(Number(seg.vaddr))
}
}
let assembly = riscvToBitVM(context.code_addr, context.codepage);
// assign program counters
for (let i = 0; i < assembly.length; i++) {
assembly[i].pc = i;
}
const labelMap = new Map();
assembly.forEach((a, i) => {
if (!labelMap.has(a.label)) {
labelMap.set(a.label, i);
}
});
assembly.forEach(a => {
if (a.find_label) {
const j = labelMap.get(a.find_label);
if (j === undefined) {
throw "label not found " + a.find_label;
}
const pc = assembly[j].pc;
if (pc === undefined) {
throw "No PC!";
}
switch (a.find_target) {
case "addressA":
a.opcode.addressA = pc;
break;
case "addressB":
a.opcode.addressB = pc;
break;
case "addressC":
a.opcode.addressC = pc;
break;
default:
throw "Unknown find_target " + a.find_target;
}
}
});
// console.log(assembly)
let memory = Array(1024 * 1024 * 16).fill(0);
const assemblyMap = new Map(assembly.map(a => [a.label, a.pc as number]));
for (let i = 0; i < context.codepage.length; i += 4) {
const label = "_riscv_pc_" + (context.code_addr + i);
const pc = assemblyMap.get(label);
if (pc === undefined) {
throw "code without bitvm assembly";
}
memory[context.code_addr + i] = pc;
}
// XXX switch to uint8
for(let i = 0; i < context.datapage.length; i++){
for (let j = 0; j < context.datapage[i].length; j += 1) {
memory[context.data_addr[i] + j] = context.datapage[i].readUInt8(j) as number;
}
}
let bitvm_code: bitvm.Instruction[] = [];
for (let i = 0; i < assembly.length; i++) {
bitvm_code.push(assembly[i].opcode);
}
let vm = new bitvm.VM(bitvm_code, memory);
let result_snapshot = vm.run();
console.log(process.argv[2] + " result code: " + result_snapshot.read(tmp()) + " " + result_snapshot.read(reg2mem(28)));
}
transpile(fs.readFileSync(process.argv[2])).catch((err) => {
console.log(err);
});