-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrrt.py
273 lines (246 loc) · 11.7 KB
/
rrt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import numpy as np
import imageio
from skimage.draw import line_aa, circle, line, circle_perimeter
from tqdm import tqdm
from node import Node
from utils import xy2rc, rc2xy, distance, array_in_list, bold_filter, are_graphs_connected, find_closest_node
from heapq import heappush, heappop, heapify
import copy
import os
np.random.seed(19940513)
def read_map_to_nparray(uri):
map_img = imageio.imread(uri)
return np.array(map_img)
class RRT:
def __init__(self, waypoints, sim_map):
self.waypoints_xy = waypoints # list of numpy (2,) np array representing coordinates
self.graph_start_xy = {}
self.graph_end_xy = {}
self.sim_map = sim_map
self.sim_map_bolded = bold_filter(self.sim_map, 5)
self.traverse_map = np.copy(sim_map)
self.shortest_path_map = None
self.shortest_path_stacks = None
self.x_dim = self.sim_map.shape[1]
self.y_dim = self.sim_map.shape[0]
self.radius = 3 # 0.45m to pixel thickness
self.step = 15
self.obstacles = np.argwhere(self.sim_map_bolded == 0) # in rc convention
for view_point_xy in self.waypoints_xy:
view_point_rc = xy2rc(view_point_xy)
rr, cc = circle(view_point_rc[0], view_point_rc[1], 2.5)
self.traverse_map[rr, cc] = 0
return
def check_collision(self, p1xy, p2xy):
"""
checks collision by checking if line drawn using Bresenham algorithm intersects with any obstacle
:param p1xy: point 1 in xy coordinate
:param p2xy: point 2 in xy coordinate
:return: Boolean whether there is a collision present or not between the two points
"""
p1rc = xy2rc(p1xy)
p2rc = xy2rc(p2xy)
rr, cc = line(int(p1rc[0]), int(p1rc[1]), int(p2rc[0]), int(p2rc[1]))
line_coords_rc = np.vstack([rr, cc]).T
for line_coord_rc in line_coords_rc:
if array_in_list(line_coord_rc, list(self.obstacles)):
return True
return False
def rrt(self, graph_num, visualize=True):
"""
Rapidly expands graph from start and end node, and updates each graph
:param graph_num: Index used for saving into file
:param visualize: Whether to visualize the graph
:return: True
"""
graphs_connected = False
iteration = 0
map = np.copy(self.sim_map_bolded)
while not graphs_connected:
graphs_connected = self._update_graph(main_graph=self.graph_start_xy,
target_graph=self.graph_end_xy,
radius=self.step)
if visualize:
self.visualize_rrt(graph=self.graph_start_xy, map=map,
name=f"plots/rrt/{graph_num}/{iteration}_one.png")
if not graphs_connected:
graphs_connected = self._update_graph(main_graph=self.graph_end_xy,
target_graph=self.graph_start_xy,
radius=self.step)
if graphs_connected:
self.graph_start_xy = self.graph_end_xy
if visualize:
self.visualize_rrt(graph=self.graph_end_xy, map=map, name=f"plots/rrt/{graph_num}/{iteration}_two.png")
iteration += 1
if visualize:
self.visualize_rrt(graph=self.graph_start_xy, map=map,
name=f"plots/rrt/{graph_num}/{iteration + 1}_one.png")
self.visualize_rrt(graph=self.graph_end_xy, map=map, name=f"plots/rrt/{graph_num}/{iteration + 1}_two.png")
return True
def _update_graph(self, main_graph, target_graph, radius):
"""
Updates graph during RRT operation
:param main_graph: The graph to operate on currently
:param target_graph: The opposing graph
:param radius: The size of step its taking
:return: Boolean whether the current graph and target graph is connected or not
"""
graph_connected = False
new_node_xy = [np.random.randint(0, self.x_dim), np.random.randint(0, self.y_dim)]
# It samples random point, and finds the closest vertex that the graph has to the sampled point
closest_node_xy, dist = find_closest_node(main_graph, new_node_xy)
# finds a direction vector from the found closest point, and the sampled random point
diff = new_node_xy - closest_node_xy
dir_vec = diff / np.linalg.norm(diff)
# Places a new vertex by taking a step in the direction by factor of "radius"
dir_vec = dir_vec * radius
new_node_xy = closest_node_xy + dir_vec
new_node_xy = new_node_xy.astype(int)
if not self.check_collision(new_node_xy, closest_node_xy):
main_graph[tuple(closest_node_xy)].append((new_node_xy, dist))
main_graph[tuple(new_node_xy)] = []
main_graph[tuple(new_node_xy)].append((closest_node_xy, dist))
# finds the closest node from the opposing graph from the new vertex
closest_node_from_target_xy, dist_2 = find_closest_node(target_graph, new_node_xy)
if dist_2 < radius:
# If the newly updated point is also close enough to the opposite graph, the two graph is connected
if not self.check_collision(new_node_xy, closest_node_from_target_xy):
target_graph[tuple(closest_node_from_target_xy)].append((new_node_xy, dist_2))
target_graph[tuple(new_node_xy)] = []
target_graph[tuple(new_node_xy)].append((closest_node_from_target_xy, dist_2))
stack = []
stack.append((closest_node_from_target_xy, dist_2))
visited = set()
while stack:
print(stack)
coord, dist = stack.pop()
key = tuple(coord)
visited.add(key)
connections = target_graph[key]
if key in main_graph:
main_graph[key] = main_graph[key] + connections
else:
main_graph[key] = connections
for node in connections:
if (tuple(node[0])) not in visited:
stack.append(node)
graph_connected = True
return graph_connected
def find_shortest_paths(self, visualize=True):
"""
Finds shortest path
:return: None
"""
iteration = 0
stacks = []
# Goes through the waypoint in pairs, and finds the shortest path between those two waypoints
for graph_i, (start, end) in enumerate(zip(self.waypoints_xy[:-1], self.waypoints_xy[1:])):
print(start, end)
start_key = tuple(start)
end_key = tuple(end)
self.graph_start_xy = {}
self.graph_end_xy = {}
self.graph_start_xy[start_key] = []
self.graph_end_xy[end_key] = []
if visualize:
os.mkdir(f"plots/rrt/{graph_i}")
self.rrt(iteration, visualize=visualize)
stack = self.a_star(start, end)
stacks.append(stack)
self.visualize_connection(iteration)
iteration += 1
self.shortest_path_stacks = copy.deepcopy(stacks)
self.visualize_shortest_paths(stacks)
# A* algorithm implementation using priority queue
def a_star(self, start_xy, end_xy):
"""
A* Algorithm using priority queue
:param start_xy: Strating point in xy coordinate
:param end_xy: Ending point in xy coordinate
:return: Stack that represents the shortest path
"""
start_node = Node(start_xy, end_xy, self.graph_start_xy)
start_node.shortest_dist = 0
start_node.update_total_cost()
pq = []
pq.append(start_node)
heapify(pq)
stack = []
while pq:
current_node = heappop(pq)
if (current_node.coord_xy == end_xy).all():
print("it's done ")
iterator = current_node
while iterator:
stack.append(iterator.coord_xy)
iterator = iterator.prev_node
break
for neighbour, dist in current_node.connections:
neighbouring_node = Node(neighbour, end_xy, self.graph_start_xy)
if current_node.shortest_dist + dist < neighbouring_node.shortest_dist:
neighbouring_node.shortest_dist = current_node.shortest_dist + dist
neighbouring_node.update_total_cost()
neighbouring_node.prev_node = current_node
heappush(pq, neighbouring_node)
return stack
def visualize_shortest_paths(self, paths):
for stack in paths:
start_node = stack.pop()
start_node_rc = xy2rc(start_node)
while stack:
next_node = stack.pop()
print(f"start_node:{start_node}, next_node:{next_node}")
next_node_rc = xy2rc(next_node)
rr, cc = line(start_node_rc[0], start_node_rc[1], next_node_rc[0], next_node_rc[1])
self.shortest_path_map[rr, cc, 0] = 0
self.shortest_path_map[rr, cc, 1] = 255
self.shortest_path_map[rr, cc, -1] = 0
start_node_rc = next_node_rc
imageio.imwrite("plots/rrt/shortest_paths.png", self.shortest_path_map)
def visualize_connection(self, iteration):
temp_map = np.copy(self.sim_map_bolded)
for vertex_xy in tqdm(self.graph_start_xy.keys()):
for connection_xy, weight in self.graph_start_xy[vertex_xy]:
connection_rc = xy2rc(connection_xy)
vertex_rc = xy2rc(vertex_xy)
rr, cc, val = line_aa(vertex_rc[0], vertex_rc[1], connection_rc[0], connection_rc[1])
temp_map[rr, cc] = 0
r_ch = np.copy(temp_map)
g_ch = np.copy(temp_map)
for view_point_xy in self.waypoints_xy:
view_point_rc = xy2rc(view_point_xy)
rr, cc = circle(view_point_rc[0], view_point_rc[1], self.radius)
g_ch[rr, cc] = 0
temp_map[rr, cc] = 0
r_ch[rr, cc] = 255
img = np.append(r_ch[..., np.newaxis], np.append(g_ch[..., np.newaxis], temp_map[..., np.newaxis], -1), axis=-1)
self.shortest_path_map = img
imageio.imwrite(f"plots/rrt/connections{iteration}.png", img)
def visualize_rrt(self, graph, map, name):
for vertex_xy in tqdm(graph.keys()):
for connection_xy, weight in graph[vertex_xy]:
connection_rc = xy2rc(connection_xy)
vertex_rc = xy2rc(vertex_xy)
rr, cc, val = line_aa(vertex_rc[0], vertex_rc[1], connection_rc[0], connection_rc[1])
map[rr, cc] = 0
rr, cc = circle(vertex_rc[0], vertex_rc[1], self.radius)
rr[rr > 95] = 95
cc[cc > 95] = 95
map[rr, cc] = 0
r_ch = np.copy(map)
g_ch = np.copy(map)
for view_point_xy in self.waypoints_xy:
view_point_rc = xy2rc(view_point_xy)
rr, cc = circle(view_point_rc[0], view_point_rc[1], self.radius)
g_ch[rr, cc] = 0
map[rr, cc] = 0
r_ch[rr, cc] = 255
img = np.append(r_ch[..., np.newaxis], np.append(g_ch[..., np.newaxis], map[..., np.newaxis], -1), axis=-1)
imageio.imwrite(name, img)
def main():
sim_map = read_map_to_nparray('images/map.png')
view_points_xy = [np.array([5, 5]), np.array([9, 90]), np.array([90, 90]), np.array([45, 50]), np.array([90, 10])]
rrt = RRT(view_points_xy, sim_map)
rrt.find_shortest_paths(visualize=False)
if __name__ == "__main__":
main()