-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclean_data.py
39 lines (32 loc) · 1.02 KB
/
clean_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch
from pathlib import Path
from shutil import copyfile
import os
root='/mnt/data/datasets/cross-mapping'
def check_pt(root, train):
if train:
root = root + '/train'
dest_dir = './data/train'
else:
dest_dir = './data/val'
root = root + '/val'
os.makedirs(dest_dir, exist_ok=True)
n_bad_files = 0
all_files = list(Path(root).rglob('*.pt'))
for pt_filepath in all_files:
data = torch.load(pt_filepath)
x = data['image'].shape[0]
y = data['image'].shape[1]
assert(x == 200)
if (y < 50):
print(pt_filepath, data['image'].shape)
n_bad_files += 1
else:
name = os.path.split(pt_filepath)[-1]
target = os.path.join(dest_dir, name)
copyfile(pt_filepath, target)
return (n_bad_files, len(all_files))
bad_train, all_train = check_pt(root, train=True)
bad_val, all_val = check_pt(root, train=False)
print('train', bad_train, all_train)
print('val', bad_val, all_val)