-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdemo_Recon.m
315 lines (277 loc) · 10.1 KB
/
demo_Recon.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
function elapTime = demo_Recon(nlevel, cutoff, dataid, eta, recon_train)
% demo script to reconstruct shape with dual caculus approach
addpath(genpath('../clean_code/'));
tic;
if nargin < 1
nlevel = 2;
cutoff = 0.99;
dataid = 2;
eta = 0.0001;
recon_train = 1;
end
expid = 'mem';
pct = cutoff*100;
dryrun = false; % no shooting
showFig = false;
if recon_train > 0
reconTrain = true;
else
reconTrain = false;
end
if dataid == 1
dataset = 'faust';
ntrain = 8;
ntest = 2;
elseif dataid == 2
dataset = 'body';
ntrain = 9;
ntest = 1;
end
% set id of shapes to be reconstructed
sid = 2;
eid = 2;
K = 2^nlevel;
savefolder = ['results_',expid,'_',dataset, '/'];
if ~exist(savefolder, 'dir')
mkdir(savefolder);
end
pc_name = [savefolder,dataset,'PC_N',num2str(ntrain),'L',num2str(nlevel),'P',num2str(pct),'E',num2str(eta,'%.e'),'.mat'];
geoTrain_name = [savefolder,dataset,'Geo_N',num2str(ntrain),'L',num2str(nlevel),'E',num2str(eta,'%.e'),'.mat'];
geoTest_name = [savefolder,dataset,'Geo_N',num2str(ntrain),'L',num2str(nlevel),'E',num2str(eta,'%.e'),'_test.mat'];
if reconTrain
recon_file = [savefolder,dataset,'reconTrain_N',num2str(ntrain),'L',num2str(nlevel),'E',num2str(eta,'%.e'),'.mat'];
else
recon_file = [savefolder,dataset,'reconTest_N',num2str(ntrain),'L',num2str(nlevel),'E',num2str(eta,'%.e'),'.mat'];
end
if exist(pc_name, 'file')
pc_data = load(pc_name);
else
error('pc file not found.');
end
maxPC = length(pc_data.FV_pc_ref)/2;
ndim_max = maxPC;
ndim_recon_max = 2;
Topology = pc_data.FV_opt.faces;
[Ev, Eo, Ef] = getEdgesFromFaces(Topology);
boundaryedges = Ef(:,2)==0;
if reconTrain
geo_train = load(geoTrain_name);
for i=1:ntrain
FVs{i} = geo_train.FV_path{i}(end);
end
ps = pc_data.FVlogs; % load logmap real data
ninput = ntrain;
else
% load test geo file
geo_test = load(geoTest_name);
for i=1:ntest
FVs{i} = geo_test.FV_path_test{i}(end);
ps{i} = geo_test.FV_path_test{i}(2);
end
ninput = ntest;
end
verbose = true;
qs{1} = pc_data.FV_opt;
for i=1:ndim_max
if verbose; fprintf('set PC %d\n', i); end;
qs{end+1} = pc_data.FV_pc_ref{i};
end
for i=1:ndim_max
if verbose; fprintf('set PC %d\n', maxPC+i); end;
qs{end+1} = pc_data.FV_pc_ref{i+maxPC};
end
%% visual pcs
FV_mean = qs{1};
clear pc_data;
clear pc_len;
clear geo_test;
clear isRescale;
for k=1:ndim_recon_max
pc_len2(k) = geomDSD(FV_mean, qs{k+1},Topology,Ev,Ef,eta,1);
pc_len(k) = sqrt(pc_len2(k));
end
refPCLength = min(pc_len)/2;
refLength = refPCLength;
global q0;
%% define
elapTime = zeros(ninput,ndim_max);
lambda_opt = cell(ninput,ndim_max);
optdual = [];
optdual.useRedu = true;
optdual.useGlobal = true;
optdual.useOld = false;
ratio = zeros(ninput,1);
ratio_out = zeros(ninput, 1);
options = cell(ninput,1);
option0 = cell(ninput,1);
lambda_0 = cell(ninput,1);
pnew = cell(ninput,1);
pcs = cell(ndim_recon_max,1);
fh = cell(ninput, 1);
datweights = cell(ninput, 1);
FV_recon = cell(ninput, ndim_recon_max);% shorten recon
FV_recon2 = cell(ninput, ndim_recon_max);% logmap recon
FV_recon3 = cell(ninput, ndim_recon_max);% input recon
ori_len = zeros(ninput, 1);
short_len = zeros(ninput, 1);
long_len = zeros(ninput, ndim_recon_max);
dis_short = cell(ninput,1);
dis_log = cell(ninput,1);
dis_input=cell(ninput,1);
dis_recon = cell(ninput,ndim_recon_max);
dis_recon2=cell(ninput,ndim_recon_max);
dis_recon3=cell(ninput,ndim_recon_max);
err1 = zeros(ninput, ndim_recon_max);
err2 = zeros(ninput, ndim_recon_max);
err3 = zeros(ninput, ndim_recon_max);
% use fmincon by Aeq = ones(1,n), and beq = 1
optoptions_con = optimoptions('fmincon','SpecifyObjectiveGradient',true,...
'Display','iter');
% ,'MaxIterations',100,'MaxFunctionEvaluations',100 ,'Algorithm', 'trust-region-reflective'
optoptions_unc = optimoptions('fminunc','SpecifyObjectiveGradient',true,...
'Display','iter','Algorithm','quasi-newton');
% shortening length of input if necessary
for i=sid:eid
if reconTrain
fprintf('rescaling train %d\n', i);
else
fprintf('rescaling test %d\n', i);
end
isRescale{i} = false;
% as DSD have been modified, so length no longer valid
dis2_p{i} = geomDSD(FV_mean, ps{i},Topology,Ev,Ef,eta,1);
ori_len(i) = sqrt(dis2_p{i});
% shorten
if ori_len(i) > refLength % if longer than refLength, shortening to be less than refLength
%disp('shortening...');
ratio(i) = refLength/ori_len(i);
options{i}.useLagrange = true;
options{i}.eta = eta;
options{i}.useMem = true;
[pnew{i},ratio_out(i)] = rescaleShell(FV_mean, ps{i}, Topology, Ev, Ef, Eo, boundaryedges, ratio(i), options{i});
isRescale{i} = true;
% new len
tmp = geomDSD(FV_mean, pnew{i},Topology,Ev,Ef,eta,1);
short_len(i) = sqrt(tmp);
else
pnew{i} = ps{i};
short_len(i) = ori_len(i);
end
if showFig
figure;
subplot(121)
patch(ps{i}, 'FaceColor', [1 1 1], 'EdgeColor', 'none', 'FaceLighting', 'phong');
axis equal; axis tight; axis off; cameratoolbar; light; view(90,0);
subplot(122)
patch(pnew{i}, 'FaceColor', [1 1 0], 'EdgeColor', 'none', 'FaceLighting', 'phong');
axis equal; axis tight; axis off; cameratoolbar; light; view(90,0);
title('original to short');
end
end
% prepare pcs
for dim=1:ndim_recon_max
%pcs{dim} = cell(2*dim+1, 1);
pcs{dim}{1} = qs{1};
for k = 1:dim
%if verbose; fprintf('setting pc %d with %d\n', k, k);end;
pcs{dim}{end+1} = qs{k+1};
end
for k = 1:dim
%if verbose; fprintf('setting pc %d with %d\n', dim+k+1, ndim_max+k+1);end;
pcs{dim}{end+1} = qs{ndim_max+k+1};
end
end
%%
for i=sid:eid
for dim = ndim_recon_max % dims used to recon
if reconTrain
fprintf('Recon train %d with dim=%d \n', i, dim);
else
fprintf('Recon test %d with dim=%d \n', i, dim);
end
% init lambda with [1 0 0 ...]
lambda_0{i} = zeros(1, 2*dim+1);
if dim > 1 && optdual.useOld
lambda_0{i}(1:dim) = lambda_opt{i};
else
lambda_0{i}(1) = 1;
q0=FV_mean;
end
fh{i} = @(x) objDualCaculus2mPlus1(x,pnew{i},pcs{dim,1},Topology,Ev,Ef,Eo,boundaryedges,eta,optdual,i);
% compute optimal lambdas
if optdual.useRedu
tic;
tmp = fminunc(fh{i},lambda_0{i}(2:end),optoptions_unc);
lambda_opt{i,dim} = [0 tmp];
lambda_opt{i,dim}(1) = 1 - sum(tmp);
else
tic;
Aeq = ones(1, dim+1); beq = 1;
lambda_opt{i,dim} = fmincon(fh{i},lambda_0{i},[],[],Aeq,beq,[],[],[],optoptions_con);
end
elapTime(i,dim) = toc;
option0{i}.datweights = lambda_opt{i,dim};
option0{i}.useLagrange = true;
option0{i}.useMem = true;
option0{i}.eta = eta;
FV_recon{i,dim} = MultiResElasticAv( pcs{dim,1},Topology,Ev,Ef,Eo,boundaryedges, option0{i} );
%% prolongate
if isRescale{i}
options{i}.verbose = false;
options{i}.useMem = false;
[FV_recon2{i,dim}] = rescaleShell(FV_mean, FV_recon{i,dim}, Topology, Ev, Ef, Eo, boundaryedges, 1/ratio(i), options{i});
% get len
tmp = geomDSD(FV_mean, FV_recon2{i,dim},Topology,Ev,Ef,eta,1);
long_len(i,dim) = sqrt(tmp);
[~, FV_recon{i,dim}.vertices] = procrustes(pnew{i}.vertices, FV_recon{i,dim}.vertices, 'Scaling', false);
[~, FV_recon2{i,dim}.vertices] = procrustes(ps{i}.vertices, FV_recon2{i,dim}.vertices, 'Scaling', false);
else
FV_recon2{i,dim} = FV_recon{i,dim};
long_len(i) = short_len(i);
end
% shoot 3 steps for the case K=4
opt2exp = [];
opt2exp.step = K-1;
opt2exp.verbose = false;
opt2exp.useLagrange = true;
opt2exp.eta = eta;
opt2exp.useMem = false;
if opt2exp.step > 0 && ~dryrun
FV_recon3{i,dim} = TestShellExp2( FV_mean, FV_recon2{i,dim},Topology,Ev,Ef,Eo,boundaryedges,opt2exp );
else
FV_recon3{i,dim} = FV_recon2{i,dim};
end
% error
dis_short{i} = geomDSD(FV_mean, pnew{i},Topology,Ev,Ef,eta,1);
dis_log{i} = geomDSD(FV_mean, ps{i},Topology,Ev,Ef,eta,1);
dis_input{i} = geomDSD(FV_mean, FVs{i},Topology,Ev,Ef,eta,1);
dis_recon{i,dim} = geomDSD(pnew{i}, FV_recon{i,dim},Topology,Ev,Ef,eta,1);
dis_recon2{i,dim} = geomDSD(ps{i}, FV_recon2{i,dim},Topology,Ev,Ef,eta,1);
dis_recon3{i,dim} = geomDSD(FVs{i}, FV_recon3{i,dim},Topology,Ev,Ef,eta,1);
err1(i,dim) = dis_recon{i,dim} / dis_short{i};
err2(i,dim) = dis_recon2{i,dim} / dis_log{i};
err3(i,dim) = dis_recon3{i,dim} / dis_input{i};
if true
figure;
subplot(1,3,1);
patch(FVs{i}, 'FaceColor', [1 1 1], 'EdgeColor', 'none', 'FaceLighting', 'phong');
axis equal; axis tight; axis off; cameratoolbar; light; view(90,0);
subplot(1,3,2);
patch(FV_recon3{i,dim}, 'FaceColor', [0 1 1], 'EdgeColor', 'none', 'FaceLighting', 'phong');
axis equal; axis tight; axis off; cameratoolbar; light; view(90,0);
subplot(1,3,3);
patch(FVs{i}, 'FaceColor', [1 1 1], 'EdgeColor', 'none', 'FaceLighting', 'phong','FaceAlpha', 0.5);
hold on
patch(FV_recon3{i,dim}, 'FaceColor', [0 1 1], 'EdgeColor', 'none', 'FaceLighting', 'phong','FaceAlpha', 0.5);
axis equal; axis tight; axis off; cameratoolbar; light; view(90,0);
end
fprintf('ShortErr of %d at dim=%d: %f\n', i, dim, err1(i,dim));
fprintf('LogErr of %d at dim=%d: %f\n', i, dim, err2(i,dim));
fprintf('InputErr of %d at dim=%d: %f\n',i, dim, err3(i,dim));
fprintf('----------------------------------------------------\n');
end
end
%% save results
elapTime = toc;
save(recon_file, 'lambda_opt','FV_recon','FV_recon2','FV_recon3','err1','err2','err3','elapTime');
end