-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgen_imgs.py
83 lines (71 loc) · 2.7 KB
/
gen_imgs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
import cv2
from collections import OrderedDict
from torch.autograd import Variable
from options.test_options import TestOptions
from data.data_loader import CreateDataLoader
from models.models import create_model
import util.util as util
from util.visualizer import Visualizer
from util import html
import torch
from PIL import Image
from tqdm import tqdm
opt = TestOptions().parse(save=False)
opt.nThreads = 1 # test code only supports nThreads = 1
opt.batchSize = 1 # test code only supports batchSize = 1
opt.serial_batches = True # no shuffle
opt.no_flip = True # no flip
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
# test
if not opt.engine and not opt.onnx:
model = create_model(opt)
if opt.data_type == 16:
model.half()
elif opt.data_type == 8:
model.type(torch.uint8)
if opt.verbose:
print(model)
else:
from run_engine import run_trt_engine, run_onnx
BASE_DIR = f"gen_images/{opt.name}/"
GT_DIR = f"{BASE_DIR}gts"
PRED_DIR = f"{BASE_DIR}generated"
os.makedirs(BASE_DIR, exist_ok=True)
os.makedirs(GT_DIR, exist_ok=True)
os.makedirs(PRED_DIR, exist_ok=True)
print(PRED_DIR)
for i, data in tqdm(enumerate(dataset), total=len(dataset)):
data_label = torch.stack(data['label']) if opt.mv else data['label']
if opt.data_type == 16:
data_label = data_label.half()
data['inst'] = data['inst'].half()
elif opt.data_type == 8:
data_label = data_label.uint8()
data['inst'] = data['inst'].uint8()
if opt.export_onnx:
print ("Exporting to ONNX: ", opt.export_onnx)
assert opt.export_onnx.endswith("onnx"), "Export model file should end with .onnx"
torch.onnx.export(model, [data['label'], data['inst']],
opt.export_onnx, verbose=True)
exit(0)
minibatch = 1
if opt.engine:
generated = run_trt_engine(opt.engine, minibatch, [data['label'], data['inst']])
elif opt.onnx:
generated = run_onnx(opt.onnx, opt.data_type, minibatch, [data['label'], data['inst']])
else:
# print(data_label.size())
generated = model.inference(data_label, data['inst'], data['image'])
if opt.mv:
data_label = data['label'][0]
img_path = data['path'][0]
gt_im = img_path[0].replace('parent_0_0', 'z')
else:
data_label = data['label']
img_path = data['path']
gt_im = img_path[0].replace('parent_0_0', 'z')
im = cv2.cvtColor(util.tensor2im(generated.data[0]), cv2.COLOR_RGB2BGR)
cv2.imwrite(f"{PRED_DIR}/{gt_im.split('/')[-1]}", im)
Image.open(gt_im).resize((opt.loadSize, opt.loadSize)).save(os.path.join(GT_DIR, gt_im.split('/')[-1]))