-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_augmentation.py
364 lines (284 loc) · 12.4 KB
/
data_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import os
import matplotlib.pyplot as plt
import numpy as np
import random
import shutil
from skimage import io
import math
from PIL import Image,ImageDraw
import cv2
def data_split(source_path:str, dest_path:str , train_ratio=0.8, test_ratio=0.1, val_ratio=0.1, shuffle=True):
'''
This function shuffles and segments input data. It creates the corresponding train,test and validation directories in the given destination directory.
:param source_path: path to the directory containing the data to be split.
:param dest_path: path to the destination directory where split data will be saved.
:param train_ratio: The proportion of images to be used as the training dataset.
:param test_ratio: The proportion of images to be used as the test dataset.
:param val_ratio: The proportion of images to be used as the validation dataset.
:return: None
'''
if train_ratio + test_ratio + val_ratio !=1.0:
print('The sum of the split ratios should be equal to 1.0')
return None
train_filenames = []
test_filenames = []
val_filenames = []
filelist = os.listdir(source_path)
filelist_length = len(filelist)
if shuffle:
random.shuffle(filelist)
train_filenames, test_filenames, val_filenames = np.split(filelist, [int(filelist_length * train_ratio),
int(filelist_length * (train_ratio + test_ratio))])
if not os.path.isdir(dest_path):
os.mkdir(dest_path)
print('Files are being copied!')
if train_ratio>0.0:
count = 0
train_path = os.path.join(dest_path, 'train')
os.mkdir(train_path)
for file in train_filenames:
shutil.copy(os.path.join(source_path,file),os.path.join(train_path,file))
count+=1
if test_ratio > 0.0:
test_path = os.path.join(dest_path, 'test')
os.mkdir(test_path)
for file in test_filenames:
shutil.copy(os.path.join(source_path,file),os.path.join(test_path,file))
if val_ratio>0.0:
count = 0
val_path = os.path.join(dest_path, 'val')
os.mkdir(val_path)
for file in val_filenames:
shutil.copy(os.path.join(source_path,file),os.path.join(val_path,file))
count+=1
print('Train_size:', len(train_filenames))
print('Test_size:', len(test_filenames))
print('Validation_size:', len(val_filenames))
def reshape_images(path):
count = 0
for file in os.listdir(path):
raw_image = io.imread(os.path.join(path,file))
stacked_img = np.stack((raw_image,)*3, axis=-1)
io.imsave(os.path.join(path + '_RGB',file),stacked_img)
reshaped_image = io.imread(os.path.join(path,file))
if count <2:
print(reshaped_image.shape)
count+=1
print('Reshaped all images successfully')
def convert_0_to_255(path):
'''
This function applies min-max normalization to all images in a source folder.
'''
for file in os.listdir(path):
gt_image = io.imread(os.path.join(path,file))
min = gt_image.min()
max = gt_image.max()
gt_image = gt_image.astype('float32')
# MinMax Normalization for better image contrast.
gt_image -= min
gt_image /= (max - min)
gt_image *= 255
io.imsave(os.path.join(path,file),gt_image)
def reshape_images_opencv(path):
'''
This function converts a 2D image to a stacked 3D image.
:param path: Path to the source directory.
'''
for file in os.listdir(path):
raw_image = io.imread(os.path.join(path,file))
img2 = np.zeros_like(raw_image)
img2[:, :, 0] = raw_image[:, :, 0]
img2[:, :, 1] = raw_image[:, :, 1]
img2[:, :, 2] = raw_image[:, :, 2]
io.imsave(os.path.join(path + '3D',file),img2)
reshaped_image = io.imread(os.path.join(path + '3D',file))
def flist_creator(path):
'''
:param path: Path to the parent directory. flists of its sub-folders will be created.
:return: None
'''
if not os.path.isdir(path):
print('Input should be a directory.')
return None
# get the list of directories
dirs = os.listdir(path)
os.mkdir(os.path.join(path, 'flists'))
for dir_item in dirs:
# modify to full path -> directory
if dir_item is None:
continue
temp = dir_item
dir_item = path + "/" + dir_item
folder = os.listdir(dir_item)
file_names = []
for file in folder:
if file is None:
break
file_name = dir_item + '/' + file
file_names.append(file_name)
filename = str(path + '/flists/' + temp + '.flist')
# make output file if it does not exist.
if not os.path.exists(filename):
with open(filename, 'w') as fo:
fo.write("\n".join(file_names))
fo.close()
print("Written file is: ", filename)
#flist_creator('D:/DeDustProject/data/final_images_zoomed/gt_images_zoomed_data1')
def create_random_rectangular_mask(dest_folder,no_of_masks):
"""
This functions creates binary images of rectangular masks of desired area.
:param dest_folder: Path to the destination directory.
:param no_of_masks: Number of binary mask images to be generated.
"""
count = 0
if not os.path.isdir(dest_folder):
os.mkdir(dest_folder)
while count < no_of_masks:
img = Image.new('RGB',(256,256))
img = np.asarray(img,dtype='uint8')
img_size = img.shape[1]
#mask_size = np.random.randint(int(0.30 * img_size), int(0.40 * img_size)) # 10 - 20% mask area due to sqaured area measure
mask_size = np.random.randint(int(0.56 * img_size),int(0.635 * img_size)) # 30 - 40% mask area due to sqaured area measure
y1, x1 = np.random.randint(0, img_size - mask_size, 2)
y2, x2 = y1 + mask_size, x1 + mask_size
#masked_part = img[:, y1:y2, x1:x2]
#masked_img = img.clone()
img[y1:y2, x1:x2,:] = 255
io.imsave(f'{dest_folder}/{count}.PNG',img)
count+=1
#create_random_rectangular_mask('D:/DeDustProject/data/rectangular_masks/30_to_40',36112)
def generate_irregular_masks(H, W,NumOutputMasks):
"""
:param H: height of output mask image
:param W: width of output mask image
:param NumOutputMasks: number of mask images to create
:return: None
"""
average_radius = math.sqrt(H*H+W*W) / 8
min_num_vertex = 30 #Default value is 10
max_num_vertex = 32 #Default value is 25
mean_angle = 2 * math.pi / 5
angle_range = 2 * math.pi / 10
min_width = 60 #Defalut value is 15
max_width = 62
for im_number in range(NumOutputMasks):
mask = Image.new('L', (W, H), 0)
for _ in range(np.random.randint(1, 3)):
num_vertex = np.random.randint(min_num_vertex, max_num_vertex) #Random number of vertices.
angle_min = mean_angle - np.random.uniform(0, angle_range)
angle_max = mean_angle + np.random.uniform(0, angle_range)
angles = []
vertex = []
for i in range(num_vertex):
if i % 2 == 0:
angles.append(2 * math.pi - np.random.uniform(angle_min, angle_max))
else:
angles.append(np.random.uniform(angle_min, angle_max))
h, w = mask.size
#vertex.append((int(np.random.randint(0, w)), int(np.random.randint(0, h))))
w_vertices = np.arange(0,w,16)
h_vertices = np.arange(0,h,16)
vertex.append((np.random.choice(w_vertices,size=1), np.random.choice(h_vertices,size=1)))
for i in range(num_vertex):
r = np.clip(
np.random.normal(loc=average_radius, scale=average_radius // 2),
0, 2 * average_radius)
new_x = np.clip(vertex[-1][0] + r * math.cos(angles[i]), 0, w)
new_y = np.clip(vertex[-1][1] + r * math.sin(angles[i]), 0, h)
vertex.append((int(new_x), int(new_y)))
draw = ImageDraw.Draw(mask)
width = int(np.random.uniform(min_width, max_width))
draw.line(vertex, fill=1, width=width)
for v in vertex: #Draw ellipes of random thickness and angle connecting the vertices.
draw.ellipse((v[0] - width // 2,
v[1] - width // 2,
v[0] + width // 2,
v[1] + width // 2),
fill=1)
if np.random.normal() > 0:
mask.transpose(Image.FLIP_LEFT_RIGHT)
if np.random.normal() > 0:
mask.transpose(Image.FLIP_TOP_BOTTOM)
mask = np.asarray(mask, np.float32)
mask = np.reshape(mask, (H, W))
plt.imshow(mask, cmap='gray')
plt.show()
def tiff_to_png(path_to_folder):
'''
This function converts tiff images to png format.
:param path_to_folder: Path to the source directory.
:return: None
'''
count = 0
new_dir_path = path_to_folder + "_PNG"
if not os.path.isdir(new_dir_path):
os.mkdir(new_dir_path)
for file in os.listdir(path_to_folder):
raw_image = io.imread(os.path.join(path_to_folder,file))
raw_image = np.asarray(raw_image, np.float32)
io.imsave(os.path.join(new_dir_path,file[:-4]) + '.png', raw_image)
count+=1
def rgbpng_to_8bitpng(path_to_folder):
'''
This function converts rgb images to 8-bit png format.
:param path_to_folder: Path to the source directory.
:return: None
'''
for file in os.listdir(path_to_folder):
raw_image = io.imread(os.path.join(path_to_folder,file))[:,:,1]
raw_image = np.asarray(raw_image, np.uint8)
io.imsave(f'D:/DeDustProject/data/zoomed_masked_images_png/{file[:-4]}.PNG', raw_image)
def min_max_255(mod_image):
'''
This function performs min-max normalization on a given image.
:param mod_image: Source image.
:return: None
'''
min = mod_image.min()
max = mod_image.max()
mod_image = mod_image.astype('float32')
# MinMax Normalization for better image contrast.
mod_image -= min
mod_image /= (max - min)
mod_image *= 255
return mod_image
def add_images(image1_path,image2_path):
'''
This function adds two given images with differnet channels to overlay masks on a source image.
:param image1_path: Path to first image.
:param image1_path: Path to second image.
:return: None
'''
image1 = io.imread(image1_path)
image2 = io.imread(image2_path)
image1 = min_max(image1)
img2 = np.zeros((image2.shape[0],image2.shape[1],3),dtype='float32')
img2[:, :, 0] = image2
img2[:, :, 1] = image2
img2[:, :, 2] = image2
img2 = np.asarray(img2,dtype='float32')
img2 = min_max(img2)
mod_image = (image1 * (1 - img2)) + img2
#MinMax Normalization for better image contrast.
mod_image = min_max_255(mod_image)
io.imsave('D:/DeDustProject/data/final_images_zoomed/gt_images_zoomed_255_3/input_image1.TIF',mod_image)
def add_png_images(path_to_folder1,path_to_folder2):
'''
This function adds two given images to overlay masks on a source image.
:param image1_path: Path to first image.
:param image1_path: Path to second image.
:return: None
'''
folder1_filelist = os.listdir(path_to_folder1)
folder2_filelist = os.listdir(path_to_folder2)
for imagefile1,imagefile2 in zip(folder1_filelist,folder2_filelist):
img1 = io.imread(os.path.join(path_to_folder1,imagefile1))
img2 = io.imread(os.path.join(path_to_folder2, imagefile2))
img2[img2>0] = 255
img1 = np.asarray(img1,dtype='float32')
img2 = np.asarray(img2, dtype='float32')
img1 = min_max(img1)
img2 = min_max(img2)
added_image = (img1 * (1-img2)) + img2
added_image = cv2.normalize(added_image, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
io.imsave(f'D:/DeDustProject/data/Artifact/{imagefile2[:-4]}.PNG',added_image)