-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathartifact_classifier.py
208 lines (161 loc) · 6.93 KB
/
artifact_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import os
import cv2
import numpy as np
import tensorflow as tf
### importing required packages
import pathlib
from PIL import Image
import matplotlib.pyplot as plt
from skimage import io
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report
data_dir_train= pathlib.Path('D:/DeDustProject/data/Classification_Small/train')
data_dir_val= pathlib.Path('D:/DeDustProject/data/Classification_Small/val')
data_dir_test= pathlib.Path('D:/DeDustProject/data/Classification_Small/test')
image_count_train = len(list(data_dir_train.glob('*/*.PNG')))
image_count_val = len(list(data_dir_val.glob('*/*.PNG')))
image_count_test = len(list(data_dir_test.glob('*/*.PNG')))
print(image_count_train)
print(image_count_val)
print(image_count_test)
### setting the batch size to 8 and image height and width
batch_size = 8
img_height = 256
img_width = 256
train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255,
horizontal_flip=True,
shear_range=0.2,
rotation_range=30,
)
val_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(data_dir_train,
target_size=(256,256),
batch_size=batch_size,
class_mode='categorical',
color_mode='grayscale'
)
val_generator= val_datagen.flow_from_directory(data_dir_val,
target_size=(256,256),
batch_size=2,
class_mode='categorical',
color_mode='grayscale'
)
num_classes = 2
classes = ['Artifacts','Nuclei'] #Classification classes
epochs = 10
#A simple CNN followed by dense layers
model = tf.keras.Sequential(
[
tf.keras.layers.Conv2D(256,(5,5),input_shape=(256,256,1),padding='VALID',activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
#tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(128,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(64,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Conv2D(32,(3,3),activation='relu'),
tf.keras.layers.MaxPooling2D(),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(128,activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(32,activation='relu'),
tf.keras.layers.Dense(num_classes,activation='softmax')
]
)
class myCallback(tf.keras.callbacks.Callback):
def on_epoch_end(self,epochs,logs={}):
if(logs.get('val_accuracy')>=0.99):
print("Stopped training early!")
self.model.stop_training = True
callback = myCallback()
checkpoint_filepath = './'
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=checkpoint_filepath,
save_weights_only=False,
monitor='val_accuracy',
mode='max',
save_best_only=True)
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1. / 255)
#data_dir_test = 'D:/DeDustProject/data/Classification_Small/test'
test_generator = test_datagen.flow_from_directory(data_dir_test,
target_size=(256,256),
batch_size=1,
class_mode='categorical',
color_mode='grayscale')
data_dir_pred = 'D:/DeDustProject/data/Classification_Small/predict'
pred_generator = test_datagen.flow_from_directory(data_dir_pred,
target_size=(256,256),
batch_size=1,
class_mode='categorical',
color_mode='grayscale')
history = model.fit(train_generator,epochs=epochs,validation_data=val_generator,verbose=2)
#model.save('artifact_classifier.h5')
#Plotting the results
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss= history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(epochs)
plt.figure(figsize=(7,7))
plt.subplot(1,2,1)
plt.plot(epochs_range,acc,label='Training Accuracy')
plt.plot(epochs_range,val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1,2,2)
plt.plot(epochs_range,loss,label='Training Loss')
plt.plot(epochs_range,val_loss, label='Validation Loss')
plt.legend(loc='lower right')
plt.title('Training and Validation Loss')
#plt.savefig('plot.PNG')
image_format = 'svg' # e.g .png, .svg, etc.
image_name = 'myplot.svg'
plt.savefig(image_name, format=image_format, dpi=300)
plt.show()
# #load model
# savedModel = tf.keras.models.load_model('artifact_classifier.h5')
# img = io.imread("D:/DeDustProject/data/Classification_Small/test/Artifact/1778.PNG")
# img = np.asarray(img,dtype='float32')
# img /= 255
# x = np.expand_dims(img,axis = 0)
# x = np.expand_dims(x,axis = 3)
# pred = savedModel.predict(x)
# MaxPosition = np.argmax(pred)
# prediction_label = classes[MaxPosition]
# print(prediction_label)
# print(pred)
#score = savedModel.evaluate(test_generator)
# y_test = []
# while image_count_test !=0 :
# (_,y) = next(test_generator)
# y_test.append(y[0])
# image_count_test -=1
#
# y_test = np.asarray(y_test,dtype='float32')
# y_test.reshape((2000,2))
# print(len(y_test))
# # for (x,y) in test_generator:
# # y_test.append(y)
# y_pred = savedModel.predict(test_generator)
# y_pred = np.argmax(y_pred,axis=1)
# y_test = np.argmax(y_test,axis=1)
# #calculating precision and reall
# precision = precision_score(y_test, y_pred)
# recall = recall_score(y_test, y_pred)
#
#
# print('Precision: ',precision)
# print('Recall: ',recall)
# print('Confusion Matrix: \n')
# print(confusion_matrix(y_test, y_pred),'\n')
# print('Classification Report :\n')
# print(classification_report(y_test, y_pred, digits=3))
#print('test_loss is :',score[0])
#print('test accuracy is :',score[1])