forked from zacjiang/GMA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·282 lines (212 loc) · 9.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
from __future__ import print_function, division
import sys
sys.path.append('core')
import argparse
import os
import cv2
import time
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from network import RAFTGMA
from utils import flow_viz
import datasets
import evaluate
from torch.cuda.amp import GradScaler
# exclude extremly large displacements
MAX_FLOW = 400
def convert_flow_to_image(image1, flow):
flow = flow.permute(1, 2, 0).cpu().numpy()
flow_image = flow_viz.flow_to_image(flow)
flow_image = cv2.resize(flow_image, (image1.shape[3], image1.shape[2]))
return flow_image
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def sequence_loss(flow_preds, flow_gt, valid, gamma):
""" Loss function defined over sequence of flow predictions """
n_predictions = len(flow_preds)
flow_loss = 0.0
# exclude invalid pixels and extremely large displacements
valid = (valid >= 0.5) & ((flow_gt**2).sum(dim=1).sqrt() < MAX_FLOW)
for i in range(n_predictions):
i_weight = gamma**(n_predictions - i - 1)
i_loss = (flow_preds[i] - flow_gt).abs()
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
epe = epe.view(-1)[valid.view(-1)]
metrics = {
'epe': epe.mean().item(),
'1px': (epe < 1).float().mean().item(),
'3px': (epe < 3).float().mean().item(),
'5px': (epe < 5).float().mean().item(),
}
return flow_loss, metrics
def fetch_optimizer(args, model):
""" Create the optimizer and learning rate scheduler """
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
scheduler = optim.lr_scheduler.OneCycleLR(optimizer=optimizer, max_lr=args.lr, total_steps=args.num_steps+100,
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
return optimizer, scheduler
class Logger:
def __init__(self, model, scheduler, args):
self.model = model
self.args = args
self.scheduler = scheduler
self.total_steps = 0
self.running_loss_dict = {}
self.train_epe_list = []
self.train_steps_list = []
self.val_steps_list = []
self.val_results_dict = {}
def _print_training_status(self):
metrics_data = [np.mean(self.running_loss_dict[k]) for k in sorted(self.running_loss_dict.keys())]
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_lr()[0])
metrics_str = ("{:10.4f}, "*len(metrics_data[:-1])).format(*metrics_data[:-1])
# Compute time left
time_left_sec = (self.args.num_steps - (self.total_steps+1)) * metrics_data[-1]
time_left_sec = time_left_sec.astype(np.int)
time_left_hms = "{:02d}h{:02d}m{:02d}s".format(time_left_sec // 3600, time_left_sec % 3600 // 60, time_left_sec % 3600 % 60)
time_left_hms = f"{time_left_hms:>12}"
# print the training status
print(training_str + metrics_str + time_left_hms)
# logging running loss to total loss
self.train_epe_list.append(np.mean(self.running_loss_dict['epe']))
self.train_steps_list.append(self.total_steps)
for key in self.running_loss_dict:
self.running_loss_dict[key] = []
def push(self, metrics):
self.total_steps += 1
for key in metrics:
if key not in self.running_loss_dict:
self.running_loss_dict[key] = []
self.running_loss_dict[key].append(metrics[key])
if self.total_steps % self.args.print_freq == self.args.print_freq-1:
self._print_training_status()
self.running_loss_dict = {}
def main(args):
model = nn.DataParallel(RAFTGMA(args), device_ids=args.gpus)
print(f"Parameter Count: {count_parameters(model)}")
if args.restore_ckpt is not None:
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
model.cuda()
model.train()
# if args.stage != 'chairs':
# model.module.freeze_bn()
train_loader = datasets.fetch_dataloader(args)
optimizer, scheduler = fetch_optimizer(args, model)
scaler = GradScaler(enabled=args.mixed_precision)
logger = Logger(model, scheduler, args)
while logger.total_steps <= args.num_steps:
train(model, train_loader, optimizer, scheduler, logger, scaler, args)
if logger.total_steps >= args.num_steps:
plot_train(logger, args)
plot_val(logger, args)
break
PATH = args.output+f'/{args.name}.pth'
torch.save(model.state_dict(), PATH)
return PATH
def train(model, train_loader, optimizer, scheduler, logger, scaler, args):
for i_batch, data_blob in enumerate(train_loader):
tic = time.time()
image1, image2, flow, valid = [x.cuda() for x in data_blob]
optimizer.zero_grad()
flow_pred = model(image1, image2)
loss, metrics = sequence_loss(flow_pred, flow, valid, args.gamma)
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
scaler.step(optimizer)
scheduler.step()
scaler.update()
toc = time.time()
metrics['time'] = toc - tic
logger.push(metrics)
# Validate
if logger.total_steps % args.val_freq == args.val_freq - 1:
validate(model, args, logger)
plot_train(logger, args)
plot_val(logger, args)
PATH = args.output + f'/{logger.total_steps+1}_{args.name}.pth'
torch.save(model.state_dict(), PATH)
if logger.total_steps >= args.num_steps:
break
def validate(model, args, logger):
model.eval()
results = {}
# Evaluate results
for val_dataset in args.validation:
if val_dataset == 'chairs':
results.update(evaluate.validate_chairs(model.module, args.iters))
elif val_dataset == 'sintel':
results.update(evaluate.validate_sintel(model.module, args.iters))
elif val_dataset == 'kitti':
results.update(evaluate.validate_kitti(model.module, args.iters))
# Record results in logger
for key in results.keys():
if key not in logger.val_results_dict.keys():
logger.val_results_dict[key] = []
logger.val_results_dict[key].append(results[key])
logger.val_steps_list.append(logger.total_steps)
model.train()
def plot_val(logger, args):
for key in logger.val_results_dict.keys():
# plot validation curve
plt.figure()
plt.plot(logger.val_steps_list, logger.val_results_dict[key])
plt.xlabel('x_steps')
plt.ylabel(key)
plt.title(f'Results for {key} for the validation set')
plt.savefig(args.output+f"/{key}.png", bbox_inches='tight')
plt.close()
def plot_train(logger, args):
# plot training curve
plt.figure()
plt.plot(logger.train_steps_list, logger.train_epe_list)
plt.xlabel('x_steps')
plt.ylabel('EPE')
plt.title('Running training error (EPE)')
plt.savefig(args.output+"/train_epe.png", bbox_inches='tight')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--name', default='bla', help="name your experiment")
parser.add_argument('--stage', help="determines which dataset to use for training")
parser.add_argument('--validation', type=str, nargs='+')
parser.add_argument('--restore_ckpt', help="restore checkpoint")
parser.add_argument('--output', type=str, default='checkpoints', help='output directory to save checkpoints and plots')
parser.add_argument('--lr', type=float, default=0.00002)
parser.add_argument('--num_steps', type=int, default=100000)
parser.add_argument('--batch_size', type=int, default=6)
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
parser.add_argument('--gpus', type=int, nargs='+', default=[0, 1])
parser.add_argument('--wdecay', type=float, default=.00005)
parser.add_argument('--epsilon', type=float, default=1e-8)
parser.add_argument('--clip', type=float, default=1.0)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--upsample-learn', action='store_true', default=False,
help='If True, use learned upsampling, otherwise, use bilinear upsampling.')
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting')
parser.add_argument('--iters', type=int, default=12)
parser.add_argument('--val_freq', type=int, default=10000,
help='validation frequency')
parser.add_argument('--print_freq', type=int, default=100,
help='printing frequency')
parser.add_argument('--mixed_precision', default=False, action='store_true',
help='use mixed precision')
parser.add_argument('--model_name', default='', help='specify model name')
parser.add_argument('--position_only', default=False, action='store_true',
help='only use position-wise attention')
parser.add_argument('--position_and_content', default=False, action='store_true',
help='use position and content-wise attention')
parser.add_argument('--num_heads', default=1, type=int,
help='number of heads in attention and aggregation')
args = parser.parse_args()
torch.manual_seed(1234)
np.random.seed(1234)
if not os.path.isdir(args.output):
os.makedirs(args.output)
main(args)