-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathdata_loader.py
66 lines (49 loc) · 2.09 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import os
import time
import ujson as json
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
class MySet(Dataset):
def __init__(self):
super(MySet, self).__init__()
self.content = open('./json/json').readlines()
indices = np.arange(len(self.content))
val_indices = np.random.choice(indices, len(self.content) // 5)
self.val_indices = set(val_indices.tolist())
def __len__(self):
return len(self.content)
def __getitem__(self, idx):
rec = json.loads(self.content[idx])
if idx in self.val_indices:
rec['is_train'] = 0
else:
rec['is_train'] = 1
return rec
def collate_fn(recs):
forward = map(lambda x: x['forward'], recs)
backward = map(lambda x: x['backward'], recs)
def to_tensor_dict(recs):
values = torch.FloatTensor(map(lambda r: r['values'], recs))
masks = torch.FloatTensor(map(lambda r: r['masks'], recs))
deltas = torch.FloatTensor(map(lambda r: r['deltas'], recs))
evals = torch.FloatTensor(map(lambda r: r['evals'], recs))
eval_masks = torch.FloatTensor(map(lambda r: r['eval_masks'], recs))
forwards = torch.FloatTensor(map(lambda r: r['forwards'], recs))
return {'values': values, 'forwards': forwards, 'masks': masks, 'deltas': deltas, 'evals': evals, 'eval_masks': eval_masks}
ret_dict = {'forward': to_tensor_dict(forward), 'backward': to_tensor_dict(backward)}
ret_dict['labels'] = torch.FloatTensor(map(lambda x: x['label'], recs))
ret_dict['is_train'] = torch.FloatTensor(map(lambda x: x['is_train'], recs))
return ret_dict
def get_loader(batch_size = 64, shuffle = True):
data_set = MySet()
data_iter = DataLoader(dataset = data_set, \
batch_size = batch_size, \
num_workers = 4, \
shuffle = shuffle, \
pin_memory = True, \
collate_fn = collate_fn
)
return data_iter