forked from melbournebioinformatics/variant_calling_pipeline
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
executable file
·584 lines (508 loc) · 22.7 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
#!/bin/env python
"""
GATK-based variant-calling pipeline, WGS version.
Authors: Bernie Pope, Clare Sloggett, Gayle Philip.
Thanks to Dmitri Mouradov and Maria Doyle for input on the initial
analysis design.
Thanks to Matt Wakefield for contributions to Rubra
(https://github.com/bjpop/rubra) during pipeline development.
Description:
This program implements a workflow pipeline for next generation
sequencing variant detection using the Broad Institute's GATK for
variant calling and using ENSEMBL for basic annotation.
It uses Rubra (https://github.com/bjpop/rubra) based on the
Ruffus library.
It supports parallel evaluation of independent pipeline stages,
and can run stages on a cluster environment.
The pipeline is configured by an options file in a python file,
including the actual commands which are run at each stage.
"""
import sys
import re
import os.path
import os
from collections import defaultdict
from glob import *
import shutil
from ruffus import *
from rubra.utils import pipeline_options
from rubra.utils import (runStageCheck, mkLogFile, mkDir, mkForceLink)
from input_fastq import parse_and_link
def make_metadata_string(metadata):
return r'-r"@RG\tID:%s\tSM:%s\tPL:%s"' % (metadata['ID'], metadata['SM'], metadata['PL'])
# Shorthand access to options
ref_files = pipeline_options.ref_files
working_files = pipeline_options.working_files
logDir = pipeline_options.pipeline['logDir']
# Data setup process and input organisation and metadata functions
#Metadata holding structures
fastq_metadata = defaultdict(dict)
original_fastq_files = []
for fastq_dir in working_files['fastq_dirs']:
original_fastq_files += glob(os.path.join(fastq_dir, '*.fastq.gz'))
original_fastq_files += glob(os.path.join(fastq_dir, '*_sequence.txt.gz'))
if len(original_fastq_files)==0:
print "No input files found. Do the filenames follow the naming convention?"
print "Directories searched:"
print "\n".join(working_files['fastq_dirs'])
sys.exit(1)
# Parse metadata out of input file names and construct symlinks
# Metadata is put into a dict (for the rest of ruffus) and some of it also into symlinks (for filename uniqueness)
# currently parsing by assuming AGRF naming structure and paired-end reads
mkDir(working_files['fastq_symlink_dir'])
all_fastq_files = []
for file in original_fastq_files:
symlink = parse_and_link(file, working_files['fastq_symlink_dir'], fastq_metadata)
all_fastq_files.append(symlink)
# Make a list of files we will actually use
if pipeline_options.pipeline['restrict_samples']:
allowed_samples = set(pipeline_options.pipeline['allowed_samples'])
fastq_files = [file for file in sorted(all_fastq_files)
if (fastq_metadata[os.path.basename(file)]['sample'] in allowed_samples)]
else:
fastq_files = sorted(all_fastq_files)
print "Symlinked files that will be used:"
for file in fastq_files:
print file
print
print "Output dir is %s" % working_files['output_dir']
print "Log dir is %s" % logDir
print
# Create output subdirectories
output_dir = working_files['output_dir']
fastqc_dir = os.path.join(output_dir, "FastQC")
mkDir(fastqc_dir)
sambam_dir = os.path.join(output_dir, "alignments")
mkDir(sambam_dir)
variant_dir = os.path.join(output_dir, "variant_calls")
mkDir(variant_dir)
coverage_dir = os.path.join(output_dir, "coverage")
mkDir(coverage_dir)
ensembl_dir = os.path.join(output_dir, "ensembl")
mkDir(ensembl_dir)
# directory for final summary tables
results_dir = os.path.join(output_dir, "results")
mkDir(results_dir)
# Pipeline declarations
# Alignment and correction steps
@transform(fastq_files, regex('(.+\/)?(.+?)\.fastq\.gz'),
[r'%s/\2_fastqc' % fastqc_dir, r'%s/\2.fastqc.Success' % fastqc_dir])
def fastqc(inputs, outputs):
"""
Run FastQC on each fastq file.
"""
sequence = inputs
fastqc_dest, flagFile = outputs
runStageCheck('fastqc', flagFile, fastqc_dir, sequence)
@transform(fastq_files, regex(r".*?(([^/]+)(_1|_2))\.fastq.gz"),
[r"%s/\1.sai" % sambam_dir, r"%s/\1.alignBwa.Success" % sambam_dir])
def alignBWA(inputs, outputs):
"""
Align sequence reads to the reference genome. This is bwa's first stage, bwa aln.
Use -I for _sequence.txt files.
"""
seq = inputs
output, flag_file = outputs
encodingflag = ''
if fastq_metadata[os.path.basename(seq)]['encoding'] == 'I':
encodingflag = '-I'
print "bwa aln on %s" % os.path.basename(seq)
runStageCheck('alignBWA', flag_file, encodingflag, ref_files['bwa_reference'], seq, output)
# Convert alignments to SAM format.
# This assumes paired-end; if we have single end we should wrap in a conditional and in the other case
# define with @transform not @collate, and call SamSE not SamPE
@collate(alignBWA, regex(r"(.*?)([^/]+)(_1|_2)\.sai"),
add_inputs(r"%s/\2\3.fastq.gz" % working_files['fastq_symlink_dir']),
[r"\1\2.sam", r"\1\2.alignToSam.Success"])
def alignToSam(inputs, outputs):
"""
Turn two paired-end bwa "sai" alignments into a sam file.
"""
output,flag_file = outputs
[sai1, seq1], [sai2, seq2] = [[sai, seq] for [[sai, _flag_file], seq] in inputs]
fastq_name = os.path.splitext(os.path.basename(sai1))[0] + ".fastq.gz"
sample = fastq_metadata[fastq_name]['sample']
runID = fastq_metadata[fastq_name]['run_id']
lane = fastq_metadata[fastq_name]['lane']
readgroup_metadata = { 'PL': 'ILLUMINA',
'SM': sample,
'ID': "%s_%s_Lane%d" % (sample, runID, lane) }
metadata_str = make_metadata_string(readgroup_metadata)
print "bwa sampe on %s,%s" % (os.path.basename(sai1), os.path.basename(sai2))
runStageCheck('alignToSamPE', flag_file, ref_files['bwa_reference'], metadata_str, sai1, sai2, seq1, seq2, output)
@transform(alignToSam, suffix(".sam"),
[".bam", ".samToBam.Success"])
def samToBam(inputs, outputs):
"""
Convert sam to bam and sort, using Picard.
"""
output, flag_file = outputs
sam, _success = inputs
print "converting to sorted bam: %s" % os.path.basename(sam)
runStageCheck('samToSortedBam', flag_file, sam, output)
@collate(samToBam, regex(r'(.*?)([^/_]+)_([^/_]+_[^/_]+)\.bam'),
[r"\1\2.bam", r'\1\2.mergeBams.Success'])
def mergeBams(inputs, outputs):
"""
Merge the sorted bams together for each sample.
Picard should cope correctly if there is only one input.
"""
bams = [bam for [bam, _success] in inputs]
output, flag_file = outputs
baminputs = ' '.join(["INPUT=%s" % bam for bam in bams])
print "merging %s into %s" % (",".join([os.path.basename(bam) for bam in bams]), os.path.basename(output))
runStageCheck('mergeBams', flag_file, baminputs, output)
@follows('indexMergedBams')
@transform(mergeBams, suffix('.bam'),
['.dedup.bam', '.bam.dedup.Success'])
def dedup(inputs, outputs):
"""
Remove apparent duplicates from merged bams using Picard MarkDuplicates.
"""
input_bam, _success = inputs
output_bam, flag_file = outputs
logFile = mkLogFile(logDir, input_bam, '.dedup.log')
print "de-duping %s" % os.path.basename(input_bam)
runStageCheck('dedup', flag_file, input_bam, logFile, output_bam)
@follows('indexDedupedBams')
@transform(dedup, suffix('.bam'),
['.realigner.intervals', '.bam.realignIntervals.Success'])
def realignIntervals(inputs, outputs):
"""
Run GATK RealignTargetCreator to find suspect intervals for realignment.
"""
bam, _success = inputs
output_intervals, flag_file = outputs
logFile = mkLogFile(logDir, bam, '.realignIntervals.log')
print "calculating realignment intervals for %s" % os.path.basename(bam)
runStageCheck('realignIntervals', flag_file, ref_files['fasta_reference'], bam, ref_files['indels_realign_goldstandard'], ref_files['indels_realign_1000G'], logFile, output_intervals)
def remove_GATK_bai(bamfile):
"""
A bug in some versions of GATK cause it to create an x.bai file, and this gets in the way of using the properly named x.bam.bai file. If the given file exists, delete it.
"""
bad_bai = os.path.splitext(bamfile)[0] + ".bai"
try:
os.remove(bad_bai)
except OSError, e:
# Ignore error only if it is OSError #2, ie File Not Found
if e.errno != 2:
raise e
@transform(realignIntervals, regex(r"(.*?)([^/]+)\.realigner\.intervals"),
add_inputs([r'\1\2.bam']),
[r'\1\2.realigned.bam', r'\1\2.bam.realign.Success'])
def realign(inputs, outputs):
"""
Run GATK IndelRealigner for local realignment, using intervals found by realignIntervals.
"""
[intervals, _success], [input_bam] = inputs
output_bam, flag_file = outputs
logFile = mkLogFile(logDir, input_bam, '.realign.log')
print "realigning %s" % os.path.basename(input_bam)
runStageCheck('realign', flag_file, ref_files['fasta_reference'], input_bam, intervals, logFile, output_bam)
remove_GATK_bai(output_bam)
@follows('indexRealignedBams')
@transform(realign, suffix('.bam'),
['.recal_data.csv', '.baseQualRecalCount.Success'])
def baseQualRecalCount(inputs, outputs):
"""
GATK CountCovariates, first step of base quality score recalibration.
"""
bam, _success = inputs
output_csv, flag_file = outputs
logFile = mkLogFile(logDir, bam, '.baseQualRecalCount.log')
print "count covariates using GATK for base quality score recalibration: %s" % os.path.basename(bam)
runStageCheck('baseQualRecalCount', flag_file, bam, ref_files['fasta_reference'], ref_files['dbsnp'], logFile, output_csv)
@transform(baseQualRecalCount, regex(r'(.*?)([^/]+)\.recal_data\.csv'),
add_inputs([r'\1\2.bam']),
[r'\1\2.recal.bam', r'\1\2.baseQualRecalTabulate.Success'])
def baseQualRecalTabulate(inputs, outputs):
"""
GATK TableRecalibration: recalibrate base quality scores using the output of CountCovariates.
"""
[input_csv, _success], [input_bam] = inputs
output_bam, flag_file = outputs
logFile = mkLogFile(logDir, input_bam, '.baseQualRecalTabulate.log')
print "recalibrate base quality scores using GATK on %s" % os.path.basename(input_bam)
runStageCheck('baseQualRecalTabulate', flag_file, input_bam, ref_files['fasta_reference'], input_csv, logFile, output_bam)
remove_GATK_bai(output_bam)
# Temporarily putting this indexing step here to work around bug
@transform(baseQualRecalTabulate, suffix('.bam'),
['.bam.bai', '.bam.indexRecalibratedBams.Success'])
def indexRecalibratedBams(inputs, outputs):
"""
Index the recalibrated bams using samtools.
"""
bam, _success = inputs
output, flag_file = outputs
print "samtools index on %s" % os.path.basename(bam)
runStageCheck('indexBam', flag_file, bam)
# Variant calling steps
@follows(indexRecalibratedBams)
@transform(baseQualRecalTabulate,
regex(r'(.*?)([^/]+)\.recal\.bam'),
[r'%s/\2.SNP.vcf' % variant_dir,
r'%s/\2.SNP.vcf.idx' % variant_dir,
r'%s/\2.callSNPs.Success' % variant_dir])
def callSNPs(inputs, outputs):
"""
Use GATK UnifiedGenotyper to call SNPs from recalibrated bams.
"""
bam, _success = inputs
output_vcf, _idx, flag_file = outputs
logFile = mkLogFile(logDir, bam, '.callSNPs.log')
print "calling SNPs from %s" % bam
runStageCheck('callSNPs', flag_file, ref_files['fasta_reference'], bam, ref_files['dbsnp'], logFile, output_vcf)
@follows(indexRecalibratedBams)
@transform(baseQualRecalTabulate,
regex(r'(.*?)([^/]+)\.recal\.bam'),
[r'%s/\2.INDEL.vcf' % variant_dir,
r'%s/\2.INDEL.vcf.idx' % variant_dir,
r'%s/\2.callIndels.Success' % variant_dir])
def callIndels(inputs, outputs):
"""
Use GATK UnifiedGenotyper to call indels from recalibrated bams.
"""
bam, _success = inputs
output_vcf, _idx, flag_file = outputs
logFile = mkLogFile(logDir, bam, '.callIndels.log')
print "calling Indels from %s" % bam
runStageCheck('callIndels', flag_file, ref_files['fasta_reference'], bam, ref_files['dbsnp'], logFile, output_vcf)
@transform(callSNPs, suffix('.SNP.vcf'),
['.SNP.filtered.vcf', '.SNP.filtered.vcf.idx', '.filterSNPs.Success'])
def filterSNPs(inputs, outputs):
"""
Use GATK VariantFiltration to filter raw SNP calls.
"""
input_vcf, _idx, _success = inputs
output_vcf, _idxout, flag_file = outputs
logFile = mkLogFile(logDir, input_vcf, '.filterSNPs.log')
print "filtering SNPs from %s" % input_vcf
runStageCheck('filterSNPs', flag_file, ref_files['fasta_reference'], input_vcf, logFile, output_vcf)
@transform(callIndels, suffix('.INDEL.vcf'),
['.INDEL.filtered.vcf', '.INDEL.filtered.vcf.idx', '.filterIndels.Success'])
def filterIndels(inputs, outputs):
"""
Use GATK VariantFiltration to filter raw INDEL calls.
"""
input_vcf, _idx, _success = inputs
output_vcf, _idxout, flag_file = outputs
logFile = mkLogFile(logDir, input_vcf, '.filterIndels.log')
print "filtering indels from %s" % input_vcf
runStageCheck('filterIndels', flag_file, ref_files['fasta_reference'], input_vcf, logFile, output_vcf)
@transform([filterSNPs, filterIndels], regex(r'.*?([^/]+)\.vcf'),
[r'%s/\1.ensembl.vcf' % ensembl_dir,r'%s/\1.getEnsemblAnnotations.Success' % ensembl_dir])
def getEnsemblAnnotations(inputs, outputs):
"""
Annotate vcf using ENSEMBL variant effect predictor.
"""
vcf, _idx, _success = inputs
output, flag_file = outputs
logFile = mkLogFile(logDir, vcf, '.EnsemblAnnotation.log')
print "Annotating %s with ENSEMBL variant effect predictor" % os.path.basename(vcf)
runStageCheck('annotateEnsembl', flag_file, vcf, output, logFile)
# Indexing steps
@transform(mergeBams, suffix('.bam'),
['.bam.bai', '.bam.indexMergedBams.Success'])
def indexMergedBams(inputs, outputs):
"""
Index the merged bams using samtools.
"""
bam, _success = inputs
output, flag_file = outputs
print "samtools index on %s" % os.path.basename(bam)
runStageCheck('indexBam', flag_file, bam)
@transform(dedup, suffix('.bam'),
['.bam.bai', '.bam.indexDedupedBams.Success'])
def indexDedupedBams(inputs, outputs):
"""
Index the de-duplicated bams using samtools. Note that this actually goes from the fixMate-ed bams.
"""
bam, _success = inputs
output, flag_file = outputs
print "samtools index on %s" % os.path.basename(bam)
runStageCheck('indexBam', flag_file, bam)
@transform(realign, suffix('.bam'),
['.bam.bai', '.bam.indexRealignedBams.Success'])
def indexRealignedBams(inputs, outputs):
"""
Index the locally realigned bams using samtools.
"""
bam, _success = inputs
output, flag_file = outputs
print "samtools index on %s" % os.path.basename(bam)
runStageCheck('indexBam', flag_file, bam)
@transform(mergeBams, suffix('.bam'),
['.bam.tdf', '.bam.igvcountMergedBams.Success'])
def igvcountMergedBams(inputs, outputs):
"""
Use igvtools count to create a .tdf file for the merged bam files, to improve viewing of the bam coverage in igv.
"""
bam, _success = inputs
outfile, flag_file = outputs
print "igvtools count on %s" % os.path.basename(bam)
runStageCheck('igvcount', flag_file, bam, outfile)
@transform(realign, suffix('.bam'),
['.bam.tdf', '.bam.igvcountRealignedBams.Success'])
def igvcountRealignedBams(inputs, outputs):
"""
Use igvtools count to create a .tdf file for the merged bam files, to improve viewing of the bam coverage in igv.
"""
bam, _success = inputs
outfile, flag_file = outputs
print "igvtools count on %s" % os.path.basename(bam)
runStageCheck('igvcount', flag_file, bam, outfile)
@transform(dedup, suffix('.bam'),
['.bam.tdf', '.bam.igvcountDedupedBams.Success'])
def igvcountDedupedBams(inputs, outputs):
"""
Use igvtools count to create a .tdf file for the deduped bam files, to improve viewing of the bam coverage in igv. Note that this actually goes from the fixMate-ed bams.
"""
bam, _success = inputs
outfile, flag_file = outputs
print "igvtools count on %s" % os.path.basename(bam)
runStageCheck('igvcount', flag_file, bam, outfile)
@transform(baseQualRecalTabulate, suffix('.bam'),
['.bam.tdf', '.bam.igvcountRecalibratedBams.Success'])
def igvcountRecalibratedBams(inputs, outputs):
"""
Use igvtools count to create a .tdf file for the recalibrated bam files, to improve viewing of the bam coverage in igv.
"""
bam, _success = inputs
outfile, flag_file = outputs
print "igvtools count on %s" % os.path.basename(bam)
runStageCheck('igvcount', flag_file, bam, outfile)
@transform(filterSNPs, suffix('.vcf'),
['.vcf.gz', '.vcf.gz.tbi', '.vcfindexSNPs.Success'])
def vcfIndexSNPs(inputs, outputs):
"""
Use bgzip and tabix to prepare raw SNPs vcf for vcftools handling.
"""
vcf, _idx, _success = inputs
zipfile, tabix_index, flag_file = outputs
print "bgzip and tabix (for vcftools) on %s" % vcf
runStageCheck('indexVCF', flag_file, vcf)
@transform(filterIndels, suffix('.vcf'),
['.vcf.gz', '.vcf.gz.tbi', '.vcfindexIndels.Success'])
def vcfIndexIndels(inputs, outputs):
"""
Use bgzip and tabix to prepare raw indels vcf for vcftools handling.
"""
vcf, _idx, _success = inputs
zipfile, tabix_index, flag_file = outputs
print "bgzip and tabix (for vcftools) on %s" % vcf
runStageCheck('indexVCF', flag_file, vcf)
# Coverage steps
@follows(indexMergedBams)
@transform(mergeBams,
regex(r'(.*?)([^/]+)\.bam'),
[r'%s/\2.early.DepthOfCoverage.sample_cumulative_coverage_counts' % coverage_dir,
r'%s/\2.early.DepthOfCoverage.sample_cumulative_coverage_proportions' % coverage_dir,
r'%s/\2.early.DepthOfCoverage.sample_interval_statistics' % coverage_dir,
r'%s/\2.early.DepthOfCoverage.sample_interval_summary' % coverage_dir,
r'%s/\2.early.DepthOfCoverage.sample_statistics' % coverage_dir,
r'%s/\2.early.DepthOfCoverage.sample_summary' % coverage_dir,
r'%s/\2.earlyDepthOfCoverage.Success' % coverage_dir])
def earlyDepthOfCoverage(inputs, outputs):
"""
Use GATK DepthOfCoverage to get a first pass at coverage statistics, after merging bams.
"""
bam, _success = inputs
flag_file = outputs[-1]
output_example = outputs[0]
output_base = os.path.splitext(output_example)[0]
print "calculating coverage statistics using GATK DepthOfCoverage on %s" % bam
runStageCheck('depthOfCoverage', flag_file, ref_files['fasta_reference'], bam, output_base)
@follows(indexDedupedBams)
@transform(dedup,
regex(r'(.*?)([^/]+)\.dedup\.bam'),
[r'%s/\2.deduped.DepthOfCoverage.sample_cumulative_coverage_counts' % coverage_dir,
r'%s/\2.deduped.DepthOfCoverage.sample_cumulative_coverage_proportions' % coverage_dir,
r'%s/\2.deduped.DepthOfCoverage.sample_interval_statistics' % coverage_dir,
r'%s/\2.deduped.DepthOfCoverage.sample_interval_summary' % coverage_dir,
r'%s/\2.deduped.DepthOfCoverage.sample_statistics' % coverage_dir,
r'%s/\2.deduped.DepthOfCoverage.sample_summary' % coverage_dir,
r'%s/\2.dedupedDepthOfCoverage.Success' % coverage_dir])
def dedupedDepthOfCoverage(inputs, outputs):
"""
Use GATK DepthOfCoverage to get a coverage statistics as soon as duplicates are removed.
"""
bam, _success = inputs
flag_file = outputs[-1]
output_example = outputs[0]
output_base = os.path.splitext(output_example)[0]
print "calculating coverage statistics using GATK DepthOfCoverage on %s" % bam
runStageCheck('depthOfCoverage', flag_file, ref_files['fasta_reference'], bam, output_base)
@follows(indexRecalibratedBams)
@transform(baseQualRecalTabulate,
regex(r'(.*?)([^/]+)\.recal\.bam'),
[r'%s/\2.DepthOfCoverage.sample_cumulative_coverage_counts' % coverage_dir,
r'%s/\2.DepthOfCoverage.sample_cumulative_coverage_proportions' % coverage_dir,
r'%s/\2.DepthOfCoverage.sample_interval_statistics' % coverage_dir,
r'%s/\2.DepthOfCoverage.sample_interval_summary' % coverage_dir,
r'%s/\2.DepthOfCoverage.sample_statistics' % coverage_dir,
r'%s/\2.DepthOfCoverage.sample_summary' % coverage_dir,
r'%s/\2.depthOfCoverage.Success' % coverage_dir])
def finalDepthOfCoverage(inputs, outputs):
"""
Use GATK DepthOfCoverage to get coverage statistics.
"""
bam, _success = inputs
flag_file = outputs[-1]
output_example = outputs[0]
output_base = os.path.splitext(output_example)[0]
print "calculating coverage statistics using GATK DepthOfCoverage on %s" % bam
runStageCheck('depthOfCoverage', flag_file, ref_files['fasta_reference'], bam, output_base)
# Read-counting steps
@transform(samToBam, suffix('.bam'),
['.bam.flagstat', '.bam.countRunBam.Success'])
def countRunBam(inputs, outputs):
"""
Run samtools flagstat on the initial per-lane, per-run bam file.
"""
bam, _success = inputs
output, flag_file = outputs
print "Running samtools flagstat on %s" % bam
runStageCheck('flagstat', flag_file, bam, output)
@transform(mergeBams, suffix('.bam'),
['.bam.flagstat', '.bam.countRunBam.Success'])
def countMergedBam(inputs, outputs):
"""
Run samtools flagstat on the merged bam file.
"""
bam, _success = inputs
output, flag_file = outputs
print "Running samtools flagstat on %s" % bam
runStageCheck('flagstat', flag_file, bam, output)
@transform(realign, suffix('.bam'),
['.bam.flagstat', '.bam.countRealignedBam.Success'])
def countRealignedBam(inputs, outputs):
"""
Run samtools flagstat on the realigned bam file.
"""
bam, _success = inputs
output, flag_file = outputs
print "Running samtools flagstat on %s" % bam
runStageCheck('flagstat', flag_file, bam, output)
@transform(dedup, suffix('.bam'),
['.bam.flagstat', '.bam.countDedupedBam.Success'])
def countDedupedBam(inputs, outputs):
"""
Run samtools flagstat on the deduped bam file.
"""
bam, _success = inputs
output, flag_file = outputs
print "Running samtools flagstat on %s" % bam
runStageCheck('flagstat', flag_file, bam, output)
# Data collation and plotting steps
@merge([countDedupedBam, countMergedBam],
["%s/readcounts.txt" % results_dir, "%s/readcount_fractions.txt" % results_dir, "%s/collateReadcounts.Success" % results_dir])
def collateReadCounts(inputs, outputs):
"""
Collate read counts from samtools flagstat output into a table.
"""
# Note expected input and output directories are effectively hard-coded
in_dir = sambam_dir
out_dir = results_dir
flag_file = outputs[-1]
print "Collating read counts"
runStageCheck('collateReadcounts', flag_file, in_dir, out_dir)