forked from HpWang-whu/YOHO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathYOHO_Trainset.py
323 lines (285 loc) · 14.2 KB
/
YOHO_Trainset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
Generate Trainset using 3dmatch_train for PartI and PartII.
PC*60 rotations->FCGF backbone-> FCGF Group feature for PC keypoints;
PC + PCA filter -->new keys for less training noise;
PC pair + gt --> gt pps;
pps + FCGF Group feature --> batch.
"""
import os
import numpy as np
import argparse
import open3d as o3d
import torch
import random
from tqdm import tqdm
from utils.r_eval import compute_R_diff,quaternion_from_matrix
from utils.dataset import get_dataset_name
from utils.utils import make_non_exists_dir,random_rotation_matrix,read_pickle,save_pickle
from utils.misc import extract_features
from fcgf_model import load_model
class trainset_create():
def __init__(self,setname='3dmatch_train'):
self.dataset_name=setname
self.origin_data_dir='./data/origin_data'
self.datasets=get_dataset_name(self.dataset_name,self.origin_data_dir)
self.output_dir='./data/YOHO_FCGF'
self.Rgroup=np.load('./group_related/Rotation.npy')
self.valscenes=self.datasets['valscenes']
def PCA_keys_sample(self):
for name,dataset in tqdm(self.datasets.items()):
if name in ['wholesetname','valscenes']:continue
Save_keys_dir=f'{self.output_dir}/Filtered_Keys/{dataset.name}'
Save_pair_dir=f'{self.output_dir}/Pairs_0.03/{dataset.name}'
make_non_exists_dir(Save_keys_dir)
make_non_exists_dir(Save_pair_dir)
for pc_id in tqdm(dataset.pc_ids): #index in pc
if os.path.exists(f'{Save_keys_dir}/{pc_id}_index.npy'):continue
Keys_index=np.loadtxt(dataset.get_key_dir(pc_id)).astype(np.int)
Keys=dataset.get_kps(pc_id)
Pcas=np.load(f'{dataset.root}/pca_0.3/{pc_id}.npy')
Ok_index=np.arange(Pcas.shape[0])[Pcas[:,0]>0.03].astype(np.int)
Keys=Keys[Ok_index]
Keys_index=Keys_index[Ok_index]
#Save the filtered index
np.save(f'{Save_keys_dir}/{pc_id}_coor.npy',Keys)
np.save(f'{Save_keys_dir}/{pc_id}_index.npy',Keys_index) #in pc
#pair with the filtered keypoints: index in keys
for pair in tqdm(dataset.pair_ids):
pc0,pc1=pair
if os.path.exists(f'{Save_pair_dir}/{pc0}-{pc1}.npy'):continue
keys0=torch.from_numpy(np.load(f'{Save_keys_dir}/{pc0}_coor.npy').astype(np.float32)).cuda()
keys1=torch.from_numpy(np.load(f'{Save_keys_dir}/{pc1}_coor.npy').astype(np.float32)).cuda()
diff=torch.norm(keys0[:,None,:]-keys1[None,:,:],dim=-1).cpu().numpy()
pair=np.where(diff<0.02)
pair=np.concatenate([pair[0][:,None],pair[1][:,None]],axis=1)# pairnum*2
np.save(f'{Save_pair_dir}/{pc0}-{pc1}.npy',pair)
def FCGF_Group_Feature_Extractor(self,args,Point,Keys_index): #index in pc
#output:kn*32*60
output=[]
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
checkpoint = torch.load(args.model)
config = checkpoint['config']
num_feats = 1
Model = load_model(config.model)
model = Model(
num_feats,
config.model_n_out,
bn_momentum=0.05,
normalize_feature=config.normalize_feature,
conv1_kernel_size=config.conv1_kernel_size,
D=3)
model.load_state_dict(checkpoint['state_dict'])
model.eval()
model = model.to(device)
for i in range(self.Rgroup.shape[0]):
one_R_output=[]
R_i=self.Rgroup[i]
Point_i=Point@R_i.T
Keys_i=Point_i[Keys_index]
with torch.no_grad():
xyz_down, feature = extract_features(
model,
xyz=Point_i,
voxel_size=config.voxel_size,
device=device,
skip_check=True)
feature=feature.cpu().numpy()
xyz_down_pcd = o3d.geometry.PointCloud()
xyz_down_pcd.points = o3d.utility.Vector3dVector(xyz_down)
pcd_tree = o3d.geometry.KDTreeFlann(xyz_down_pcd)
for k in range(Keys_i.shape[0]):
[_, idx, _] = pcd_tree.search_knn_vector_3d(Keys_i[k], 1)
one_R_output.append(feature[idx[0]][None,:])
one_R_output=np.concatenate(one_R_output,axis=0)#kn*32
output.append(one_R_output[:,:,None])
return np.concatenate(output,axis=-1) #kn*32*60
def PC_random_rot_feat(self,args):
for key,dataset in tqdm(self.datasets.items()):
if key in ['wholesetname','valscenes']:continue
for pc_id in tqdm(dataset.pc_ids):
Feats_save_dir=f'{self.output_dir}/Rotated_Features/{dataset.name}'
make_non_exists_dir(Feats_save_dir)
if os.path.exists(f'{Feats_save_dir}/{pc_id}_feats.npz'):continue
Random_Rs=[]
Feats=[]
PC=dataset.get_pc(pc_id)
Key_idx=np.load(f'{self.output_dir}/Filtered_Keys/{dataset.name}/{pc_id}_index.npy')
for R_i in range(5):
R_one=random_rotation_matrix()
Random_Rs.append(R_one[None,:,:])
Random_Rs=np.concatenate(Random_Rs,axis=0)# 5*3*3
for R_i in range(5):
PC_one=PC@Random_Rs[R_i].T
feat_one=self.FCGF_Group_Feature_Extractor(args,PC_one,Key_idx) #kn*32*60
Feats.append(feat_one[None,:,:,:])
Feats=np.concatenate(Feats,axis=0)#5*kn*32*60
np.save(f'{Feats_save_dir}/{pc_id}_Rs.npy',Random_Rs)
np.savez(f'{Feats_save_dir}/{pc_id}_feats.npz',Rs=Random_Rs,feats=Feats)
def R2DR_id(self,R):
min_diff=180
best_id=0
for R_id in range(self.Rgroup.shape[0]):
R_diff=compute_R_diff(self.Rgroup[R_id],R)
if R_diff<min_diff:
min_diff=R_diff
best_id=R_id
return best_id
def DeltaR(self,R,index):
R_anchor=self.Rgroup[index]#3*3
#R=Rres@Ranc->[email protected]
deltaR=R@R_anchor.T
return quaternion_from_matrix(deltaR)
def trainset(self):
Save_list_dir=f'{self.output_dir}/Train_val_list/trainset'
make_non_exists_dir(Save_list_dir)
batch_i=-1
trainlist_pair=[]
for name,dataset in tqdm(self.datasets.items()):
if name in ['wholesetname','valscenes']:continue
if name in self.valscenes:
print(f'val scene: {name}')
continue
for pair in tqdm(dataset.pair_ids):
pc0,pc1=pair
#if os.path.exists(f'{Save_list_dir}/{i*16)}.pth'):continue
#feature readin
Feats0=np.load(f'{self.output_dir}/Rotated_Features/{dataset.name}/{pc0}_feats.npz')
Feats1=np.load(f'{self.output_dir}/Rotated_Features/{dataset.name}/{pc1}_feats.npz')
Feats0_f=Feats0['feats']
Feats1_f=Feats1['feats']
Feats0_R=Feats0['Rs']
Feats1_R=Feats1['Rs']
AllRs=[]
AllR_indexs=[]
AlldeltaRs=[]
for Ri_id in range(Feats0_R.shape[0]):
for Rj_id in range(Feats1_R.shape[0]):
R_i=Feats0_R[Ri_id]
R_j=Feats1_R[Rj_id]
R=R_j@R_i.T
true_idx=self.R2DR_id(R)
delR=self.DeltaR(R,true_idx)
AllRs.append(R[None,:,:])
AllR_indexs.append(true_idx)
AlldeltaRs.append(delR[None,:])
AllRs=np.concatenate(AllRs,axis=0).reshape([5,5,3,3])
AllR_indexs=np.array(AllR_indexs).reshape([5,5])
AlldeltaRs=np.concatenate(AlldeltaRs,axis=0).reshape([5,5,4])
#pps
Key_pps=np.load(f'{self.output_dir}/Pairs_0.03/{dataset.name}/{pc0}-{pc1}.npy') #index in keys
keys0=dataset.get_kps(pc0)
keys1=dataset.get_kps(pc1)
pps_all=np.arange(Key_pps.shape[0]) #index
if pps_all.shape[0]<10:continue
if pps_all.shape[0]<32:
pps_all=np.repeat(pps_all,int(32/pps_all.shape[0])+1)
np.random.shuffle(pps_all)
for i in range(10):
#pair pps (choose 32):
np.random.shuffle(pps_all)
pps=Key_pps[pps_all[0:32]]# bn*2
keys_sample0=keys0[pps[:,0]]
keys_sample1=keys1[pps[:,1]]
BaseIndex=np.arange(5).astype(np.int)
Index_i=np.random.choice(BaseIndex, size=32, replace=True)
Index_j=np.random.choice(BaseIndex, size=32, replace=True)
Rs=[]
R_indexs=[]
deltaR=[]
feats_one_batch_i=[]
feats_one_batch_j=[]
for b in range(32):
Rs.append(AllRs[Index_i[b],Index_j[b]][None,:,:])
R_indexs.append(AllR_indexs[Index_i[b],Index_j[b]])
deltaR.append(AlldeltaRs[Index_i[b],Index_j[b]][None,:])
#feat
feats_one_batch_i.append(Feats0_f[Index_i[b],pps[b,0]][None,:,:])
feats_one_batch_j.append(Feats1_f[Index_j[b],pps[b,1]][None,:,:])
Rs=np.concatenate(Rs,axis=0)
R_indexs=np.array(R_indexs)
deltaR=np.concatenate(deltaR,axis=0)
feats_one_batch_i=np.concatenate(feats_one_batch_i,axis=0)
feats_one_batch_j=np.concatenate(feats_one_batch_j,axis=0)
item={
'feats0':torch.from_numpy(feats_one_batch_i.astype(np.float32)), #before enhanced rot
'feats1':torch.from_numpy(feats_one_batch_j.astype(np.float32)), #after enhanced rot
'keys0':torch.from_numpy(keys_sample0.astype(np.float32)),
'keys1':torch.from_numpy(keys_sample1.astype(np.float32)),
'R':torch.from_numpy(Rs.astype(np.float32)),
'true_idx':torch.from_numpy(R_indexs.astype(np.int)),
'deltaR':torch.from_numpy(deltaR.astype(np.float32))
}
batch_i+=1
torch.save(item,f'{Save_list_dir}/{batch_i}.pth',_use_new_zipfile_serialization=False)
trainlist_pair.append((dataset.name,pc0,pc1,i))
save_pickle([i for i in range(batch_i+1)],f'{self.output_dir}/Train_val_list/train.pkl')
save_pickle(trainlist_pair,f'{self.output_dir}/Train_val_list/train_pcp.pkl')
def valset(self):
Save_list_dir=f'{self.output_dir}/Train_val_list/valset'
make_non_exists_dir(Save_list_dir)
val_pc_pts=[]
if not os.path.exists(f'{self.output_dir}/Train_val_list/val_pcp.pkl'):
for scene in tqdm(self.valscenes):
dataset=self.datasets[scene]
for pair in tqdm(dataset.pair_ids):
pc0,pc1=pair
Key_pps=np.load(f'{self.output_dir}/Pairs_0.03/{dataset.name}/{pc0}-{pc1}.npy') #index in keys
for k in range(Key_pps.shape[0]):
BaseIndex=np.arange(5).astype(np.int)
Ri=np.random.choice(BaseIndex, size=1, replace=True)[0]
Rj=np.random.choice(BaseIndex, size=1, replace=True)[0]
val_pc_pts.append((dataset.name,pc0,pc1,Ri,Rj,Key_pps[k,0],Key_pps[k,1]))
random.shuffle(val_pc_pts)
val_pc_pts=val_pc_pts[0:5000]
save_pickle([i for i in range(len(val_pc_pts))],f'{self.output_dir}/Train_val_list/val.pkl')
save_pickle(val_pc_pts,f'{self.output_dir}/Train_val_list/val_pcp.pkl')
else:
val_pc_pts=read_pickle(f'{self.output_dir}/Train_val_list/val_pcp.pkl')
for i in tqdm(range(len(val_pc_pts))):
datasetname,pc0,pc1,Ri_id,Rj_id,pt0,pt1=val_pc_pts[i]
Feats0=np.load(f'{self.output_dir}/Rotated_Features/{datasetname}/{pc0}_feats.npz')
Feats1=np.load(f'{self.output_dir}/Rotated_Features/{datasetname}/{pc1}_feats.npz')
datasetname=datasetname[(str.rfind(datasetname,'/')+1):]
keys0=self.datasets[datasetname].get_kps(pc0)
keys1=self.datasets[datasetname].get_kps(pc1)
key0=keys0[pt0]
key1=keys1[pt1]
R_i=Feats0['Rs'][Ri_id]
R_j=Feats1['Rs'][Rj_id]
R=R_j@R_i.T
true_idx=self.R2DR_id(R)
feat0=Feats0['feats'][Ri_id,pt0]
feat1=Feats1['feats'][Rj_id,pt1]
item={
'feats0':torch.from_numpy(feat0.astype(np.float32)), #before enhanced rot 32*60
'feats1':torch.from_numpy(feat1.astype(np.float32)), #after enhanced rot 32*60
'keys0':key0,
'keys1':key1,
'R':torch.from_numpy(R.astype(np.float32)),
'true_idx':torch.from_numpy(np.array([true_idx]))
}
torch.save(item,f'{Save_list_dir}/{i}.pth',_use_new_zipfile_serialization=False)
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'-m',
'--model',
default='./model/Backbone/best_val_checkpoint.pth',
type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument(
'--datasetname',
default='3dmatch_train',
type=str,
help='trainset name')
parser.add_argument(
'--voxel_size',
default=0.025,
type=float,
help='voxel size to preprocess point cloud')
args = parser.parse_args()
trainset_creater=trainset_create(setname=args.datasetname)
trainset_creater.PCA_keys_sample()
trainset_creater.PC_random_rot_feat(args)
trainset_creater.trainset()
trainset_creater.valset()