-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgtfs_rt_validator_api.py
439 lines (338 loc) · 14.2 KB
/
gtfs_rt_validator_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
__version__ = "0.0.5"
import concurrent
import json
import multiprocessing
import os
import shutil
import subprocess
import traceback
from collections import defaultdict
from concurrent.futures import ProcessPoolExecutor
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
import gcsfs
import pandas as pd
import pendulum
import structlog as structlog
import typer
from calitp.config import get_bucket
from structlog import configure
from structlog.threadlocal import bind_threadlocal, clear_threadlocal, merge_threadlocal
configure(processors=[merge_threadlocal, structlog.processors.KeyValueRenderer()])
logger = structlog.get_logger()
RT_BUCKET_FOLDER = "gs://gtfs-data/rt"
RT_BUCKET_PROCESSED_FOLDER = "gs://gtfs-data/rt-processed"
SCHEDULE_BUCKET_FOLDER = "gs://gtfs-data/schedule"
# Note that the final {extraction_date} is needed by the validator, which may read it as
# timestamp data. Note that the final datetime requires Z at the end, to indicate
# it's a ISO instant
RT_FILENAME_TEMPLATE = (
"{extraction_date}__{itp_id}__{url_number}__{src_fname}__{extraction_date}Z.pb"
)
N_THREAD_WORKERS = 30
try:
JAR_PATH = os.environ["GTFS_VALIDATOR_JAR"]
except KeyError:
raise Exception("Must set the environment variable GTFS_VALIDATOR_JAR")
# https://typer.tiangolo.com/
app = typer.Typer()
# Utility funcs ----
def json_to_newline_delimited(in_file, out_file):
data = json.load(open(in_file))
with open(out_file, "w") as f:
f.write("\n".join([json.dumps(record) for record in data]))
def parse_pb_name_data(file_name):
"""Returns data encoded in extraction files, such as datetime or itp id.
>>> parse_pb_name_data("2021-01-01__1__0__filename__etc")
{'extraction_date': '2021-01-01', 'itp_id': 1, 'url_number': 0, 'src_fname': 'filename'}
"""
extraction_date, itp_id, url_number, src_fname, *_ = Path(file_name).name.split(
"__"
)
return dict(
extraction_date=extraction_date,
itp_id=int(itp_id),
url_number=int(url_number),
src_fname=src_fname,
)
def build_pb_validator_name(extraction_date, itp_id, url_number, src_fname):
"""Return name for file in the format needed for validation.
Note that the RT validator needs to use timestamps at the end of the filename,
so this function ensures they are present.
"""
return RT_FILENAME_TEMPLATE.format(
extraction_date=extraction_date,
itp_id=itp_id,
url_number=url_number,
src_fname=src_fname,
)
# Validation ==================================================================
def gather_results(rt_path):
# TODO: complete functionality to unpack results into a DataFrame
# Path(rt_path).glob("*.results.json")
raise NotImplementedError()
@app.command()
def validate(gtfs_file, rt_path, verbose=False):
logger.info(f"validating {gtfs_file} and {rt_path}")
if not isinstance(gtfs_file, str):
raise NotImplementedError("gtfs_file must be a string")
stderr = subprocess.DEVNULL if not verbose else None
stdout = subprocess.DEVNULL if not verbose else None
subprocess.check_call(
[
"java",
"-jar",
JAR_PATH,
"-gtfs",
gtfs_file,
"-gtfsRealtimePath",
rt_path,
"-sort",
"name",
],
stderr=stderr,
stdout=stdout,
)
@app.command()
def validate_gcs_bucket(
project_id,
token,
gtfs_schedule_path,
gtfs_rt_glob_path: str = None,
out_dir: str = None,
results_bucket: str = None,
verbose: bool = False,
aggregate_counts: bool = False,
idx: int = None,
):
"""
Fetch and validate GTFS RT data held in a google cloud bucket.
Parameters:
project_id: name of google cloud project.
token: token argument passed to gcsfs.GCSFileSystem.
gtfs_schedule_path: path to a folder holding unpacked GTFS schedule data.
gtfs_rt_glob_path: path that GCSFileSystem.glob can uses to list all RT files.
Note that this is assumed to have the form {datetime}/{itp_id}/{url_number}/filename.
out_dir: a directory to store fetched files and results in.
results_bucket: a bucket path to copy results to.
verbose: whether to print helpful messages along the way.
aggregate_counts: tbd
Note that if out_dir is unspecified, the validation occurs in a temporary directory.
"""
# TODO: get python 3.9
clear_threadlocal()
bind_threadlocal(
idx=idx,
gtfs_schedule_path=gtfs_schedule_path,
gtfs_rt_glob_path=gtfs_rt_glob_path,
out_dir=out_dir,
result_bucket=results_bucket,
)
logger.debug("entering validate_gcs_bucket")
logger.debug("getting gcs file system")
fs = gcsfs.GCSFileSystem(project_id, token=token)
logger.debug("got gcs file system")
if not out_dir:
tmp_dir = TemporaryDirectory()
tmp_dir_name = tmp_dir.name
else:
tmp_dir = None
tmp_dir_name = out_dir
if results_bucket and not aggregate_counts and results_bucket.endswith("/"):
results_bucket = f"{results_bucket}/"
final_json_dir = Path(tmp_dir_name) / "newline_json"
try:
dst_path_gtfs = f"{tmp_dir_name}/gtfs"
dst_path_rt = f"{tmp_dir_name}/rt"
# fetch rt data
if gtfs_rt_glob_path is None:
raise ValueError("One of gtfs rt glob path or date must be specified")
num_files = download_rt_files(dst_path_rt, fs, glob_path=gtfs_rt_glob_path)
# fetch and zip gtfs schedule
download_gtfs_schedule_zip(gtfs_schedule_path, dst_path_gtfs, fs)
logger.info(f"validating {num_files} files")
validate(f"{dst_path_gtfs}.zip", dst_path_rt, verbose=verbose)
if results_bucket and aggregate_counts:
logger.info(f"Saving aggregate counts as: {results_bucket}")
error_counts = rollup_error_counts(dst_path_rt)
if error_counts:
df = pd.DataFrame(error_counts)
with NamedTemporaryFile() as tmp_file:
df.to_parquet(tmp_file.name)
fs.put(tmp_file.name, results_bucket)
elif results_bucket and not aggregate_counts:
# validator stores results as {filename}.results.json
logger.info(f"Putting data into results bucket: {results_bucket}")
# fetch all results files created by the validator
all_results = list(Path(dst_path_rt).glob("*.results.json"))
final_json_dir.mkdir(exist_ok=True)
final_files = []
for result in all_results:
# we appended a final timestamp to the files so that the validator
# can use it to order them during validation. here, we remove that
# timestamp, so we can use a single wildcard to select, eg..
# *trip_updates.results.json
result_out = "__".join(result.name.split("__")[:-1])
json_to_newline_delimited(result, final_json_dir / result_out)
final_files.append(final_json_dir / result_out)
fs.put(final_files, results_bucket)
except Exception as e:
typer.echo(f"got exception during validation: {traceback.format_exc()}")
raise e
finally:
if isinstance(tmp_dir, TemporaryDirectory):
tmp_dir.cleanup()
@app.command()
def validate_gcs_bucket_many(
project_id: str = "cal-itp-data-infra",
token: str = None, # "cloud",
param_csv: str = f"{get_bucket()}/rt-processed/calitp_validation_params/{pendulum.today().to_date_string()}.csv",
results_bucket: str = f"{get_bucket()}/rt-processed/validation/{pendulum.today().to_date_string()}",
verbose: bool = True,
aggregate_counts: bool = True,
summary_path: str = f"{get_bucket()}/rt-processed/validation/{pendulum.today().to_date_string()}/summary.json",
strict: bool = False,
result_name_prefix: str = "validation_results",
threads: int = 1,
limit: int = None,
):
"""Validate many gcs buckets using a parameter file.
Additional Arguments:
strict: whether to raise an error when a validation fails
summary_path: directory for saving the status of validations
result_name_prefix: a name to prefix to each result file name. File names
will be numbered. E.g. result_0.parquet, result_1.parquet for two feeds.
Param CSV should contain the following fields (passed to validate_gcs_bucket):
* gtfs_schedule_path
* gtfs_rt_glob_path
The full parameters CSV is dumped to JSON with an additional column called
is_status, which reports on whether or not the validation was succesfull.
"""
import gcsfs
required_cols = [
"calitp_itp_id",
"calitp_url_number",
"gtfs_schedule_path",
"gtfs_rt_glob_path",
"output_filename",
]
logger.info(f"reading params from {param_csv}")
fs = gcsfs.GCSFileSystem(project_id, token=token)
params = pd.read_csv(fs.open(param_csv))
if limit:
logger.warn(f"limiting to {limit} rows")
params = params.iloc[:limit]
# check that the parameters file has all required columns
missing_cols = set(required_cols) - set(params.columns)
if missing_cols:
raise ValueError("parameter csv missing columns: %s" % missing_cols)
statuses = []
logger.info(f"processing {params.shape[0]} inputs with {threads} threads")
# https://github.com/fsspec/gcsfs/issues/379#issuecomment-826887228
# Note that this seems to differ per OS
ctx = multiprocessing.get_context("spawn")
# from https://stackoverflow.com/a/55149491
# could be cleaned up a bit with a namedtuple
with ProcessPoolExecutor(max_workers=threads, mp_context=ctx) as pool:
futures = {
pool.submit(
validate_gcs_bucket,
project_id,
token,
verbose=verbose,
# TODO: os.path.join() would be better probably
results_bucket=results_bucket
+ f"/{result_name_prefix}/{row['calitp_itp_id']}/{row['calitp_url_number']}/{row['output_filename']}.parquet",
aggregate_counts=aggregate_counts,
idx=idx,
gtfs_schedule_path=row["gtfs_schedule_path"],
gtfs_rt_glob_path=row["gtfs_rt_glob_path"],
): row
for idx, row in params.iterrows()
}
# Processes each future as it is completed, i.e. returned or errored
for future in concurrent.futures.as_completed(futures):
row = futures[future]
# result() will throw an exception if one occurred in the underlying function
try:
future.result()
except Exception as e:
if strict:
raise e
statuses.append({**row, "is_success": False, "exc": str(e)})
else:
statuses.append({**row, "is_success": True})
successes = sum(s["is_success"] for s in statuses)
logger.info(f"finished multiprocessing; {successes} successful of {len(statuses)}")
summary_ndjson = "\n".join([json.dumps(record) for record in statuses])
if summary_path:
fs.pipe(summary_path, summary_ndjson.encode())
def download_gtfs_schedule_zip(gtfs_schedule_path, dst_path, fs):
# fetch and zip gtfs schedule
logger.info(f"Fetching gtfs schedule data from {gtfs_schedule_path} to {dst_path}")
fs.get(gtfs_schedule_path, dst_path, recursive=True)
try:
os.remove(os.path.join(dst_path, "areas.txt"))
except FileNotFoundError:
pass
shutil.make_archive(dst_path, "zip", dst_path)
def download_rt_files(dst_dir, fs=None, date="2021-08-01", glob_path=None) -> int:
"""Download all files for an GTFS RT feed (or multiple feeds)
If date is specified, downloads daily data for all feeds. Otherwise, if
glob_path is specified, downloads data for a single feed.
Parameters:
date: date of desired feeds to download data from (e.g. 2021-09-01)
glob_path: if specified, the path (including a wildcard) for downloading a
single feed.
"""
if fs is None:
raise NotImplementedError("Must specify fs")
# {date}T{timestamp}/{itp_id}/{url_number}
all_files = (
fs.glob(glob_path)
if glob_path
else fs.glob(f"{RT_BUCKET_FOLDER}/{date}*/*/*/*")
)
to_copy = []
out_feeds = defaultdict(lambda: [])
for src_path in all_files:
dt, itp_id, url_number, src_fname = src_path.split("/")[-4:]
if glob_path:
dst_parent = Path(dst_dir)
else:
# if we are downloading multiple feeds, make each feed a subdir
dst_parent = Path(dst_dir) / itp_id / url_number
dst_parent.mkdir(parents=True, exist_ok=True)
out_fname = build_pb_validator_name(dt, itp_id, url_number, src_fname)
dst_name = str(dst_parent / out_fname)
to_copy.append([src_path, dst_name])
out_feeds[(itp_id, url_number)].append(dst_name)
if not to_copy:
msg = "failed to find any rt files to download"
logger.warn(msg)
raise ValueError(msg)
logger.info(f"downloading {len(to_copy)} files with glob_path {glob_path}")
src_files, dst_files = zip(*to_copy)
fs.get(list(src_files), list(dst_files))
return len(to_copy)
# Rectangling =================================================================
def rollup_error_counts(rt_dir):
result_files = Path(rt_dir).glob("*.results.json")
code_counts = []
for path in result_files:
metadata = parse_pb_name_data(path)
result_json = json.load(path.open())
for entry in result_json:
code_counts.append(
{
"calitp_itp_id": metadata["itp_id"],
"calitp_url_number": metadata["url_number"],
"calitp_extracted_at": metadata["extraction_date"],
"rt_feed_type": metadata["src_fname"],
"error_id": entry["errorMessage"]["validationRule"]["errorId"],
"n_occurrences": len(entry["occurrenceList"]),
}
)
return code_counts
if __name__ == "__main__":
app()