-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathwmma_atomic.cu
201 lines (167 loc) · 6.81 KB
/
wmma_atomic.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#define CUB_HALF_OPTIMIZATION 1
#include <benchmark/benchmark.h>
#include <type_traits>
#include <utility>
#include "init/init.hpp"
#include "prefixsum/args.hpp"
#include "utils/utils.hpp"
#include "kernel.cuh"
using namespace wmma_prefixsum;
enum class block_synchronization_stategy : int { synchronize_threads, atomic_ballot };
template <int SEGMENT_SIZE,
int WARPS_PER_BLOCK,
block_synchronization_stategy sync_stategy>
void tryCUDA_WMMA_FULL_PREFIXSUM_ATOMIC(benchmark::State &state) {
const size_t num_elements = state.range(0);
if (num_elements % SEGMENT_SIZE) {
state.SkipWithError("num_elements must be multiples of SEGMENT_SIZE");
return;
}
size_t num_segments = (num_elements + SEGMENT_SIZE - 1) / SEGMENT_SIZE;
const int BLOCK_DIM = WARPS_PER_BLOCK * WARP_SIZE;
half *d_in_fp16 = nullptr;
half *d_out = nullptr;
half *partial_sums = nullptr;
int *partial_sums_visitor = nullptr;
dim3 gridDim, blockDim;
blockDim.x = BLOCK_DIM;
gridDim.x = (num_segments + WARPS_PER_BLOCK - 1) / WARPS_PER_BLOCK;
if (gridDim.x >= CUDA_MAX_GRID_SIZE) {
state.SkipWithError(
fmt::format("gridDim.x={} is greater than CUDA_MAX_GRID_SIZE", gridDim.x)
.c_str());
return;
}
PRINT_IF_ERROR(cudaMalloc(&d_in_fp16, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&d_out, num_elements * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&partial_sums, num_segments * sizeof(half)));
PRINT_IF_ERROR(cudaMalloc(&partial_sums_visitor, 1 * sizeof(int)));
cudaMemset(partial_sums_visitor, 0, 1 * sizeof(int));
cuda_memory_set(d_in_fp16, 0.001f, num_elements);
cudaEvent_t start, stop;
PRINT_IF_ERROR(cudaEventCreate(&start));
PRINT_IF_ERROR(cudaEventCreate(&stop));
defer(cudaEventDestroy(start));
defer(cudaEventDestroy(stop));
try {
for (auto _ : state) {
PRINT_IF_ERROR(cudaMemset(d_out, 0, 2 * sizeof(half)));
PRINT_IF_ERROR(cudaEventRecord(start));
if (sync_stategy == block_synchronization_stategy::synchronize_threads) {
state.SkipWithError("not implemented");
// compute_wmma_atomic_warp_prefixsum_w_syncthreads<SEGMENT_SIZE, WARPS_PER_BLOCK,
// BLOCK_DIM>
// <<<gridDim, blockDim>>>(d_in_fp16, d_out,
// partial_sums_visitor,
// num_segments);
} else if (sync_stategy == block_synchronization_stategy::atomic_ballot) {
compute_wmma_prefixsum_atomic_w_atomicballot<SEGMENT_SIZE,
WARPS_PER_BLOCK,
BLOCK_DIM><<<gridDim, blockDim>>>(
d_in_fp16, d_out, partial_sums, num_segments, partial_sums_visitor);
}
PRINT_IF_ERROR(cudaEventRecord(stop));
PRINT_IF_ERROR(cudaEventSynchronize(stop));
state.PauseTiming();
float msecTotal = 0.0f;
PRINT_IF_ERROR(cudaEventElapsedTime(&msecTotal, start, stop));
state.SetIterationTime(msecTotal / 1000);
state.ResumeTiming();
}
state.counters.insert({{"num_elements", num_elements},
{"num_segments", num_segments},
{"segment_size", SEGMENT_SIZE},
{"warps_per_block", WARPS_PER_BLOCK},
{"flops",
{state.iterations() * 1.0 * num_elements,
benchmark::Counter::kAvgThreadsRate}}});
#if 0
half h_out;
PRINT_IF_ERROR(cudaMemcpy(&h_out, d_out, sizeof(half), cudaMemcpyDeviceToHost));
int errors = 0;
float correct_sum = 0;
for (int i = 0; i < num_elements; i++) {
correct_sum += h_in[i];
}
if (fabs(half_to_float(h_out) - correct_sum) > 0.1) {
errors++;
if (errors < 10) {
printf("Expected Reuction = %f, got h_out_buf = %f\n",
correct_sum,
half_to_float(h_out));
}
}
if (errors > 0) {
printf("CUDA_WMMA_FULL_PREFIXSUM_ATOMIC does not agree with "
"SEQUENTIAL! "
"%d errors!\n",
errors);
}
#endif
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(partial_sums);
cudaFree(partial_sums_visitor);
} catch (...) {
cudaFree(d_in_fp16);
cudaFree(d_out);
cudaFree(partial_sums);
cudaFree(partial_sums_visitor);
cudaDeviceReset();
const auto p = std::current_exception();
std::rethrow_exception(p);
}
}
template <int SEGMENT_SIZE,
int WARPS_PER_BLOCK,
block_synchronization_stategy sync_stategy>
void CUDA_WMMA_FULL_PREFIXSUM_ATOMIC(benchmark::State &state) {
cudaDeviceReset();
try {
tryCUDA_WMMA_FULL_PREFIXSUM_ATOMIC<SEGMENT_SIZE, WARPS_PER_BLOCK, sync_stategy>(
state);
} catch (const std::exception &e) {
state.SkipWithError(e.what());
} catch (const std::string &e) {
state.SkipWithError(e.c_str());
} catch (...) {
state.SkipWithError("unknown exception");
}
}
template <int SEGMENT_SIZE, int WARPS_PER_BLOCK>
void CUDA_WMMA_FULL_PREFIXSUM_ATOMIC_W_BLOCK_SYNC(benchmark::State &state) {
CUDA_WMMA_FULL_PREFIXSUM_ATOMIC<SEGMENT_SIZE,
WARPS_PER_BLOCK,
block_synchronization_stategy::synchronize_threads>(
state);
}
template <int SEGMENT_SIZE, int WARPS_PER_BLOCK>
void CUDA_WMMA_FULL_PREFIXSUM_ATOMIC_W_ATOMIC_BALLOT(benchmark::State &state) {
CUDA_WMMA_FULL_PREFIXSUM_ATOMIC<SEGMENT_SIZE,
WARPS_PER_BLOCK,
block_synchronization_stategy::atomic_ballot>(state);
}
#define BENCHMARK_PREFIXSUM0(SEGMENT_SIZE, WARPS_PER_BLOCK) \
BENCHMARK_TEMPLATE( \
CUDA_WMMA_FULL_PREFIXSUM_ATOMIC_W_ATOMIC_BALLOT, SEGMENT_SIZE, WARPS_PER_BLOCK) \
->ARGS() \
->UseManualTime()
#define BENCHMARK_PREFIXSUM(SEGMENT_SIZE) \
BENCHMARK_PREFIXSUM0(SEGMENT_SIZE, 1); \
BENCHMARK_PREFIXSUM0(SEGMENT_SIZE, 2); \
BENCHMARK_PREFIXSUM0(SEGMENT_SIZE, 4); \
BENCHMARK_PREFIXSUM0(SEGMENT_SIZE, 8); \
BENCHMARK_REDUCTION0(SEGMENT_SIZE, 16)
#if 0 // dead lock
BENCHMARK_REDUCTION(256);
BENCHMARK_REDUCTION(2 * 256);
BENCHMARK_PREFIXSUM(4 * 256);
BENCHMARK_PREFIXSUM(8 * 256);
BENCHMARK_PREFIXSUM(16 * 256);
BENCHMARK_PREFIXSUM(32 * 256);
BENCHMARK_PREFIXSUM(64 * 256);
BENCHMARK_PREFIXSUM(128 * 256);
BENCHMARK_PREFIXSUM(256 * 256);
BENCHMARK_PREFIXSUM(512 * 256);
BENCHMARK_PREFIXSUM(1024 * 256);
#endif