-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathkernel.cuh
974 lines (768 loc) · 37.4 KB
/
kernel.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
#pragma once
#include "init/init.hpp"
#include "utils/utils.hpp"
#include <cooperative_groups.h>
#include <mma.h>
namespace wmma_prefixsum {
using namespace nvcuda;
using namespace cooperative_groups;
#ifndef WARP_SIZE
#define WARP_SIZE (32)
#endif
// MMA matrix tile dimensions. (16, 16, 16), (32, 8, 16), and (8, 32,
// 16) are currently supported.
static const int M = 16;
static const int N = 16;
static const int K = 16;
static const int WMMA_TILE_SIZE = (M * N);
constexpr __host__ __device__ int min_unroll(size_t x, size_t y) {
return x <= y ? x : y;
}
template <int BLOCK_DIM, size_t SEGMENT_SIZE>
static __global__ void add_partial_sums(half *__restrict__ output,
const half *__restrict__ partial_sums,
size_t num_elements) {
const size_t global_offset = blockIdx.x * SEGMENT_SIZE;
#pragma unroll
for (size_t ii = 0; ii < SEGMENT_SIZE; ii += BLOCK_DIM) {
const size_t offset = global_offset + ii + threadIdx.x;
if (offset < num_elements) {
output[offset] += partial_sums[blockIdx.x];
}
}
}
// segment_size = 16
// each warp calculates WMMA_TILES_PER_WARP * 16 segments
template <int WMMA_TILES_PER_WARP, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_16(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
#pragma unroll
for (int ii = 0; ii < WMMA_TILES_PER_WARP; ii++) {
const size_t globalTileIdx = globalWarpIdx * WMMA_TILES_PER_WARP + ii;
const size_t offset = globalTileIdx * WMMA_TILE_SIZE;
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::mma_sync(out_frag, a_frag, u_frag, out_frag);
wmma::store_matrix_sync(d_out + offset, out_frag, 16, wmma::mem_row_major);
}
}
// each warp calculates 16 consecutive segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_16n(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half curr_out_frag_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half next_out_frag_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const size_t global_offset = globalWarpIdx * 16 * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll min_unroll(SEGMENT_SIZE / 16, 32)
for (int ii = 0; ii < SEGMENT_SIZE / 16; ii++) {
const bool is_not_last_iteration = (ii + 1) < (SEGMENT_SIZE / 16);
const int offset = global_offset + ii * 16;
wmma::load_matrix_sync(a_frag, d_in + offset, SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, u_frag, out_frag);
wmma::store_matrix_sync(curr_out_frag_s + local_offset, out_frag, 16,
wmma::mem_row_major);
__syncthreads();
#pragma unroll
for (int jj = 0; jj < WMMA_TILE_SIZE; jj += WARP_SIZE) {
const auto idx = jj + laneid;
const auto m = idx / 16;
const auto n = idx % 16;
d_out[global_offset + m * SEGMENT_SIZE + ii * 16 + n] =
curr_out_frag_s[local_offset + idx];
if (is_not_last_iteration) {
next_out_frag_s[local_offset + idx] = curr_out_frag_s[local_offset + 16 * m + 15];
}
}
if (is_not_last_iteration) {
__syncthreads();
wmma::load_matrix_sync(out_frag, next_out_frag_s + local_offset, 16,
wmma::mem_row_major);
}
}
}
// each block calculates consecutive 16 segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_16n_block(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half curr_out_frag_s[16 * WMMA_TILE_SIZE];
__shared__ half next_out_frag_s[16 * WMMA_TILE_SIZE];
__shared__ half partial_sums_s[WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / 16;
const size_t global_offset = blockIdx.x * 16 * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const bool is_not_last_iteration = (ii + WARPS_PER_BLOCK) < wmma_tiles_per_segment;
const size_t offset = global_offset + (localWarpIdx + ii) * 16;
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, u_frag, out_frag);
wmma::store_matrix_sync(curr_out_frag_s + local_offset, out_frag, 16,
wmma::mem_row_major);
__syncthreads();
if (localWarpIdx == 0) {
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(
b_frag, curr_out_frag_s + 16,
16); // TODO: should be curr_out_frag_s + 15(fix when 128 alignment is relaxed)
wmma::mma_sync(out_frag, b_frag, u_frag, out_frag);
wmma::store_matrix_sync(partial_sums_s, out_frag, 16, wmma::mem_row_major);
}
__syncthreads();
#pragma unroll
for (int jj = 0; jj < WMMA_TILE_SIZE; jj += WARP_SIZE) {
const auto idx = jj + laneid;
const auto m = idx / 16;
const auto n = idx % 16;
half val = curr_out_frag_s[local_offset + idx];
if (localWarpIdx > 0) {
val += partial_sums_s[m * 16 + localWarpIdx - 1];
}
d_out[global_offset + m * SEGMENT_SIZE + ii * 16 + n] = val;
if (is_not_last_iteration) {
next_out_frag_s[local_offset + idx] = partial_sums_s[16 * m + 15];
}
}
if (is_not_last_iteration) {
__syncthreads();
wmma::load_matrix_sync(out_frag, next_out_frag_s + local_offset, 16,
wmma::mem_row_major);
}
}
}
// each warp calculates 16 strided segments
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_16n_opt(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half curr_out_frag_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half next_out_frag_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalSegmentIdx = blockIdx.x * WARPS_PER_BLOCK + localWarpIdx;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll min_unroll(SEGMENT_SIZE / 16, 32)
for (int ii = 0; ii < SEGMENT_SIZE / 16; ii++) {
const bool is_not_last_iteration = (ii + 1) < (SEGMENT_SIZE / 16);
const int offset = global_offset + ii * 16;
// WARPS_PER_BLOCK * SEGMENT_SIZE cannot be more than 2^31 - 1 = 2147483647
wmma::load_matrix_sync(a_frag, d_in + offset, WARPS_PER_BLOCK * SEGMENT_SIZE);
wmma::mma_sync(out_frag, a_frag, u_frag, out_frag);
wmma::store_matrix_sync(curr_out_frag_s + local_offset, out_frag, 16,
wmma::mem_row_major);
#pragma unroll
for (int jj = 0; jj < WMMA_TILE_SIZE; jj += WARP_SIZE) {
const auto idx = jj + laneid;
const auto m = idx / 16;
const auto n = idx % 16;
d_out[global_offset + m * WARPS_PER_BLOCK * SEGMENT_SIZE + ii * 16 + n] =
curr_out_frag_s[local_offset + idx];
if (is_not_last_iteration) {
next_out_frag_s[local_offset + idx] = curr_out_frag_s[local_offset + 16 * m + 15];
}
}
if (is_not_last_iteration) {
__syncthreads();
wmma::load_matrix_sync(out_frag, next_out_frag_s + local_offset, 16,
wmma::mem_row_major);
}
}
}
// segment_size = WMMA_TILE_SIZE
// each warp calculates SEGMENTS_PER_WARP segments
template <int SEGMENTS_PER_WARP, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_256(const half *__restrict__ d_in,
half *__restrict__ d_out,
size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
#pragma unroll
for (int ii = 0; ii < SEGMENTS_PER_WARP; ii++) {
const size_t globalSegmentIdx = globalWarpIdx * SEGMENTS_PER_WARP + ii;
const size_t offset = globalSegmentIdx * WMMA_TILE_SIZE;
wmma::fill_fragment(au_frag, zero<half>());
wmma::fill_fragment(la_frag, zero<half>());
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, au_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out + offset, out_frag, 16, wmma::mem_row_major);
}
}
// segment_size = 256
// each warp calculates SEGMENTS_PER_WARP segments and writes
// SEGMENTS_PER_WARP
// partial sums
template <int SEGMENTS_PER_WARP, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_256_ps(
const half *__restrict__ d_in, half *__restrict__ d_out,
half *__restrict__ partial_sums, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
#pragma unroll
for (int ii = 0; ii < SEGMENTS_PER_WARP; ii++) {
const size_t globalSegmentIdx = globalWarpIdx * SEGMENTS_PER_WARP + ii;
const size_t offset = globalSegmentIdx * WMMA_TILE_SIZE;
wmma::fill_fragment(au_frag, zero<half>());
wmma::fill_fragment(la_frag, zero<half>());
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, au_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out + offset, out_frag, 16, wmma::mem_row_major);
if (laneid == 0) {
__threadfence_block();
partial_sums[globalSegmentIdx] = d_out[offset + WMMA_TILE_SIZE - 1];
}
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void
compute_wmma_segmented_prefixsum_256n(const half *__restrict__ d_in,
half *__restrict__ d_out, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out + offset, out_frag, 16, wmma::mem_row_major);
__threadfence_block();
wmma::fill_fragment(out_frag, d_out[offset + WMMA_TILE_SIZE - 1]);
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment and writes 1 partial sum
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void
compute_wmma_segmented_prefixsum_256n_ps(const half *__restrict__ d_in,
half *__restrict__ d_out,
half *__restrict__ partial_sums,
size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const size_t localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t offset = global_offset + ii * WMMA_TILE_SIZE;
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out + offset, out_frag, 16, wmma::mem_row_major);
__threadfence_block();
wmma::fill_fragment(out_frag, d_out[offset + WMMA_TILE_SIZE - 1]);
}
if (laneid == 0) {
partial_sums[globalWarpIdx] = d_out[global_offset + SEGMENT_SIZE - 1];
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_256n_block(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half out_frag_s[16* WMMA_TILE_SIZE]; // todo:: fix when 256 is fixed bellow --- needs to be (WARPS_PER_BLOCK +1) * WMMA_TILE_SIZE
__shared__ half partial_sums_s[WMMA_TILE_SIZE]; // only use the first 16
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalSegmentIdx = blockIdx.x;
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / WMMA_TILE_SIZE;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> c_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const size_t offset = global_offset + (ii + localWarpIdx) * WMMA_TILE_SIZE;
wmma::fill_fragment(out_frag, zero<half>());
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(out_frag_s + local_offset, out_frag, 16, wmma::mem_row_major);
__syncthreads();
if (localWarpIdx == 0) {
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(c_frag, out_frag_s + 256,
WMMA_TILE_SIZE); // TODO: should be curr_out_frag_s + 255
// (fix when 128 alignment is relaxed)
wmma::mma_sync(out_frag, c_frag, u_frag, out_frag);
wmma::store_matrix_sync(partial_sums_s, out_frag, 16, wmma::mem_row_major);
}
__syncthreads();
#pragma unroll
for (int jj = 0; jj < WMMA_TILE_SIZE; jj += WARP_SIZE) {
const auto idx = jj + laneid;
const auto m = idx / 16;
const auto n = idx % 16;
half val = out_frag_s[local_offset + idx];
if (localWarpIdx > 0) {
val += partial_sums_s[localWarpIdx - 1];
}
d_out[offset + idx] = val;
}
wmma::fill_fragment(out_frag, partial_sums_s[15]);
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_segmented_prefixsum_256n_block_ps(
const half *__restrict__ d_in, half *__restrict__ d_out, size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half out_frag_s[16 * WMMA_TILE_SIZE];
__shared__ half partial_sums[WMMA_TILE_SIZE]; // only use the first 16
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t globalSegmentIdx = blockIdx.x;
const size_t wmma_tiles_per_segment = SEGMENT_SIZE / WMMA_TILE_SIZE;
const size_t global_offset = globalSegmentIdx * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::col_major> c_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < wmma_tiles_per_segment; ii += WARPS_PER_BLOCK) {
const size_t offset = global_offset + (ii + localWarpIdx) * WMMA_TILE_SIZE;
wmma::fill_fragment(out_frag, zero<half>());
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + offset, 16);
wmma::load_matrix_sync(b_frag, d_in + offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(out_frag_s + local_offset, out_frag, 16, wmma::mem_row_major);
if (localWarpIdx == 0) {
wmma::fill_fragment(out_frag, zero<half>());
wmma::load_matrix_sync(c_frag, out_frag_s + 255, WMMA_TILE_SIZE);
wmma::mma_sync(out_frag, c_frag, u_frag, out_frag);
wmma::store_matrix_sync(partial_sums, out_frag, 16, wmma::mem_row_major);
}
__syncthreads();
#pragma unroll
for (int jj = 0; jj < WMMA_TILE_SIZE; jj += WARP_SIZE) {
const auto idx = jj + laneid;
const auto m = idx / 16;
const auto n = idx % 16;
half val = out_frag_s[local_offset + idx];
if (localWarpIdx > 0) {
val += partial_sums[localWarpIdx - 1];
}
d_out[offset + idx] = val;
}
wmma::fill_fragment(out_frag, partial_sums[15]);
}
if (threadIdx.x == 0) {
partial_sums[globalSegmentIdx] = d_out[global_offset + SEGMENT_SIZE - 1];
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_prefixsum_cg(const half *__restrict__ d_in,
half *__restrict__ d_out,
half *__restrict__ partial_sums,
size_t num_segments) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * SEGMENT_SIZE];
__shared__ half adjusted_sums[32]; // WARPS_PER_BLOCK
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const size_t num_wmma_tiles = (SEGMENT_SIZE + WMMA_TILE_SIZE - 1) / WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t d_out_s_offset = localWarpIdx * SEGMENT_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < num_wmma_tiles; ii++) {
const size_t in_offset = global_offset + ii * WMMA_TILE_SIZE;
const size_t out_offset = d_out_s_offset + ii * WMMA_TILE_SIZE;
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + in_offset, 16);
wmma::load_matrix_sync(b_frag, d_in + in_offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out_s + out_offset, out_frag, 16, wmma::mem_row_major);
/* __threadfence_block(); */
wmma::fill_fragment(out_frag, d_out_s[out_offset + WMMA_TILE_SIZE - 1]);
}
if (laneid == 0) {
partial_sums[globalWarpIdx] = d_out_s[d_out_s_offset + SEGMENT_SIZE - 1];
}
this_grid().sync();
if (laneid == 0) {
for (size_t ii = 0; ii < globalWarpIdx; ii++) {
adjusted_sums[localWarpIdx] += partial_sums[ii];
}
xprintf("------adjusted_sums[%d] = %f\n", localWarpIdx,
(float) adjusted_sums[localWarpIdx]);
}
__syncwarp();
/* __syncthreads(); */
for (size_t ii = 0; ii < SEGMENT_SIZE; ii += WARP_SIZE) {
const auto idx = ii + laneid;
d_out[global_offset + idx] =
d_out_s[d_out_s_offset + idx] + adjusted_sums[localWarpIdx];
}
}
// SEGMENTS_PER_WARP = 1
// each warp calculates 1 segment
template <size_t SEGMENT_SIZE, int WARPS_PER_BLOCK, int BLOCK_DIM>
static __global__ void compute_wmma_prefixsum_atomic_w_atomicballot(
const half *__restrict__ d_in, half *__restrict__ d_out,
half *__restrict__ partial_sums, size_t num_segments, int *partial_sums_visitor) {
__shared__ half u_frag_s[WMMA_TILE_SIZE];
__shared__ half l_frag_s[WMMA_TILE_SIZE];
__shared__ half la_mat_s[WARPS_PER_BLOCK * WMMA_TILE_SIZE];
__shared__ half d_out_s[WARPS_PER_BLOCK * SEGMENT_SIZE];
__shared__ half adjusted_sums[32]; // WARPS_PER_BLOCK
const size_t globalWarpIdx = (blockIdx.x * BLOCK_DIM + threadIdx.x) / WARP_SIZE;
const int localWarpIdx = threadIdx.x / WARP_SIZE;
const size_t global_offset = globalWarpIdx * SEGMENT_SIZE;
const int local_offset = localWarpIdx * WMMA_TILE_SIZE;
const int laneid = threadIdx.x % WARP_SIZE;
const size_t d_out_s_offset = localWarpIdx * SEGMENT_SIZE;
const int num_warps = BLOCK_DIM / WARP_SIZE;
#pragma unroll
for (int idx = threadIdx.x; idx < WMMA_TILE_SIZE; idx += BLOCK_DIM) {
const auto ii = idx / N;
const auto jj = idx % N;
u_frag_s[idx] = ii <= jj ? one<half>() : zero<half>();
l_frag_s[idx] = ii <= jj ? zero<half>() : one<half>();
}
__syncthreads();
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> b_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> u_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> l_frag;
wmma::fragment<wmma::matrix_b, M, N, K, half, wmma::row_major> o_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> la_frag;
wmma::fragment<wmma::matrix_a, M, N, K, half, wmma::row_major> la_mat_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> au_frag;
wmma::fragment<wmma::accumulator, M, N, K, half> out_frag;
wmma::load_matrix_sync(u_frag, u_frag_s, 16);
wmma::load_matrix_sync(l_frag, l_frag_s, 16);
wmma::fill_fragment(o_frag, one<half>());
wmma::fill_fragment(out_frag, zero<half>());
#pragma unroll
for (size_t ii = 0; ii < SEGMENT_SIZE / WMMA_TILE_SIZE; ii++) {
const size_t in_offset = global_offset + ii * WMMA_TILE_SIZE;
const size_t out_offset = d_out_s_offset + ii * WMMA_TILE_SIZE;
wmma::fill_fragment(la_frag, zero<half>());
wmma::load_matrix_sync(a_frag, d_in + in_offset, 16);
wmma::load_matrix_sync(b_frag, d_in + in_offset, 16);
wmma::mma_sync(au_frag, a_frag, u_frag, out_frag);
wmma::mma_sync(la_frag, l_frag, b_frag, la_frag);
// store accumulator la_frag into shared memory and load it into
// matrix_a
// fragment la_mat_frag
wmma::store_matrix_sync(la_mat_s + local_offset, la_frag, 16, wmma::mem_row_major);
wmma::load_matrix_sync(la_mat_frag, la_mat_s + local_offset, 16);
wmma::mma_sync(out_frag, la_mat_frag, o_frag, au_frag);
wmma::store_matrix_sync(d_out_s + out_offset, out_frag, 16, wmma::mem_row_major);
/* __threadfence_block(); */
wmma::fill_fragment(out_frag, d_out_s[out_offset + WMMA_TILE_SIZE - 1]);
}
if (laneid == 0) {
partial_sums[globalWarpIdx] = d_out_s[d_out_s_offset + SEGMENT_SIZE - 1];
}
int val = atomicAdd(partial_sums_visitor, 1);
do {
} while (atomicCAS(partial_sums_visitor, num_warps, 0));
if (laneid == 0) {
for (size_t ii = 0; ii < globalWarpIdx; ii++) {
adjusted_sums[localWarpIdx] += partial_sums[ii];
}
xprintf("------adjusted_sums[%d] = %f\n", localWarpIdx,
(float) adjusted_sums[localWarpIdx]);
}
__syncwarp();
/* __syncthreads(); */
for (size_t ii = 0; ii < SEGMENT_SIZE; ii += WARP_SIZE) {
const auto idx = ii + laneid;
d_out[global_offset + idx] =
d_out_s[d_out_s_offset + idx] + adjusted_sums[localWarpIdx];
}
}
} // namespace wmma_prefixsum