-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathgaussian_random_fields.py
109 lines (80 loc) · 3.14 KB
/
gaussian_random_fields.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# Copyright 2017 Bruno Sciolla. All Rights Reserved.
# ==============================================================================
# Generator for 2D scale-invariant Gaussian Random Fields
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
# Main dependencies
import numpy
import scipy.fftpack
def fftind(size):
""" Returns a numpy array of shifted Fourier coordinates k_x k_y.
Input args:
size (integer): The size of the coordinate array to create
Returns:
k_ind, numpy array of shape (2, size, size) with:
k_ind[0,:,:]: k_x components
k_ind[1,:,:]: k_y components
Example:
print(fftind(5))
[[[ 0 1 -3 -2 -1]
[ 0 1 -3 -2 -1]
[ 0 1 -3 -2 -1]
[ 0 1 -3 -2 -1]
[ 0 1 -3 -2 -1]]
[[ 0 0 0 0 0]
[ 1 1 1 1 1]
[-3 -3 -3 -3 -3]
[-2 -2 -2 -2 -2]
[-1 -1 -1 -1 -1]]]
"""
k_ind = numpy.mgrid[:size, :size] - int( (size + 1)/2 )
k_ind = scipy.fftpack.fftshift(k_ind)
return( k_ind )
def gaussian_random_field(alpha = 3.0,
size = 128,
flag_normalize = True):
""" Returns a numpy array of shifted Fourier coordinates k_x k_y.
Input args:
alpha (double, default = 3.0):
The power of the power-law momentum distribution
size (integer, default = 128):
The size of the square output Gaussian Random Fields
flag_normalize (boolean, default = True):
Normalizes the Gaussian Field:
- to have an average of 0.0
- to have a standard deviation of 1.0
Returns:
gfield (numpy array of shape (size, size)):
The random gaussian random field
Example:
import matplotlib
import matplotlib.pyplot as plt
example = gaussian_random_field()
plt.imshow(example)
"""
# Defines momentum indices
k_idx = fftind(size)
# Defines the amplitude as a power law 1/|k|^(alpha/2)
amplitude = numpy.power( k_idx[0]**2 + k_idx[1]**2 + 1e-10, -alpha/4.0 )
amplitude[0,0] = 0
# Draws a complex gaussian random noise with normal
# (circular) distribution
noise = numpy.random.normal(size = (size, size)) \
+ 1j * numpy.random.normal(size = (size, size))
# To real space
gfield = numpy.fft.ifft2(noise * amplitude).real
# Sets the standard deviation to one
if flag_normalize:
gfield = gfield - numpy.mean(gfield)
gfield = gfield/numpy.std(gfield)
return gfield
def main():
import matplotlib
import matplotlib.pyplot as plt
example = gaussian_random_field()
plt.imshow(example, cmap='gray')
plt.show()
if __name__ == '__main__':
main()