-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathDESCRIPTION
133 lines (133 loc) · 3.89 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
Package: MachineShop
Type: Package
Title: Machine Learning Models and Tools
Version: 3.8.0
Date: 2024-08-19
Authors@R: person(c("Brian", "J"), "Smith",
email = "[email protected]",
role = c("aut", "cre"))
Author: Brian J Smith [aut, cre]
Maintainer: Brian J Smith <[email protected]>
Description: Meta-package for statistical and machine learning with a unified
interface for model fitting, prediction, performance assessment, and
presentation of results. Approaches for model fitting and prediction of
numerical, categorical, or censored time-to-event outcomes include
traditional regression models, regularization methods, tree-based methods,
support vector machines, neural networks, ensembles, data preprocessing,
filtering, and model tuning and selection. Performance metrics are provided
for model assessment and can be estimated with independent test sets, split
sampling, cross-validation, or bootstrap resampling. Resample estimation
can be executed in parallel for faster processing and nested in cases of
model tuning and selection. Modeling results can be summarized with
descriptive statistics; calibration curves; variable importance; partial
dependence plots; confusion matrices; and ROC, lift, and other performance
curves.
Depends: R (>= 4.1.0)
Imports: abind, cli (>= 3.1.0), dials (>= 0.0.4), foreach, ggplot2 (>= 3.4.0),
kernlab, magrittr, Matrix (>= 1.5-0), methods, nnet, party, polspline,
progress, recipes (>= 1.0.0), rlang, rsample (>= 1.1.0), Rsolnp, survival,
tibble, utils
Suggests: adabag, BART, bartMachine, C50, censored, cluster, doParallel, e1071,
earth, elasticnet, generics, gbm, glmnet, gridExtra, Hmisc, kableExtra,
kknn, knitr, lars, MASS, mboost, mda, ParBayesianOptimization,
parsnip (>= 1.1.0), partykit, pls, pso, randomForest, randomForestSRC,
ranger, rBayesianOptimization, rmarkdown, rms, rpart, testthat, tree,
xgboost
LazyData: true
License: GPL-3
URL: https://brian-j-smith.github.io/MachineShop/
BugReports: https://github.com/brian-j-smith/MachineShop/issues
RoxygenNote: 7.3.2
VignetteBuilder: knitr
Encoding: UTF-8
Collate:
'classes.R'
'conditions.R'
'MachineShop-package.R'
'MLControl.R'
'MLInput.R'
'MLMetric.R'
'MLModel.R'
'MLOptimization.R'
'ML_AdaBagModel.R'
'ML_AdaBoostModel.R'
'ML_BARTMachineModel.R'
'ML_BARTModel.R'
'ML_BlackBoostModel.R'
'ML_C50Model.R'
'ML_CForestModel.R'
'ML_CoxModel.R'
'ML_EarthModel.R'
'ML_FDAModel.R'
'ML_GAMBoostModel.R'
'ML_GBMModel.R'
'ML_GLMBoostModel.R'
'ML_GLMModel.R'
'ML_GLMNetModel.R'
'ML_KNNModel.R'
'ML_LARSModel.R'
'ML_LDAModel.R'
'ML_LMModel.R'
'ML_MDAModel.R'
'ML_NNetModel.R'
'ML_NaiveBayesModel.R'
'ML_ParsnipModel.R'
'ML_PLSModel.R'
'ML_POLRModel.R'
'ML_QDAModel.R'
'ML_RFSRCModel.R'
'ML_RPartModel.R'
'ML_RandomForestModel.R'
'ML_RangerModel.R'
'ML_SVMModel.R'
'ML_StackedModel.R'
'ML_SuperModel.R'
'ML_SurvRegModel.R'
'ML_TreeModel.R'
'ML_XGBModel.R'
'ModelFrame.R'
'ModelRecipe.R'
'ModelSpecification.R'
'TrainedInputs.R'
'TrainedModels.R'
'TrainingParams.R'
'append.R'
'calibration.R'
'case_comps.R'
'coerce.R'
'combine.R'
'confusion.R'
'convert.R'
'data.R'
'dependence.R'
'diff.R'
'expand.R'
'extract.R'
'fit.R'
'grid.R'
'metricinfo.R'
'metrics.R'
'metrics_factor.R'
'metrics_numeric.R'
'modelinfo.R'
'models.R'
'performance.R'
'performance_curve.R'
'plot.R'
'predict.R'
'print.R'
'recipe_roles.R'
'reexports.R'
'resample.R'
'response.R'
'rfe.R'
'settings.R'
'step_kmeans.R'
'step_kmedoids.R'
'step_lincomp.R'
'step_sbf.R'
'step_spca.R'
'summary.R'
'survival.R'
'utils.R'
'varimp.R'