-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path86_30tr-86_10ts.py
153 lines (110 loc) · 5 KB
/
86_30tr-86_10ts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 29 19:20:59 2019
@author: juangabriel
"""
# Redes Neuronales Convolucionales
# Instalar Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
# Instalar Tensorflow y Keras
# conda install -c conda-forge keras
# Parte 1 - Construir el modelo de CNN
# Importar las liobrerías y paquetes
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
# from keras.models import Sequential
# from keras.layers import Dense
from keras.callbacks import EarlyStopping
# from sklearn.model_selection import train_test_split
# from sklearn.metrics import r2_score, mean_absolute_error, accuracy_score
from matplotlib import pyplot as plt
#Îfrom keras.utils import np_utils
import numpy as np
import random
import tensorflow as ts
random.seed(42)
np.random.seed(42)
ts.random.set_seed(42)
# Inicializar la CNN
classifier = Sequential()
# Paso 1 - Convolución
classifier.add(Conv2D(filters = 32,kernel_size = (3, 3),
input_shape = (64, 64, 3), activation = "relu"))
# Paso 2 - Max Pooling
classifier.add(MaxPooling2D(pool_size = (2,2)))
# Una segunda capa de convolución y max pooling
classifier.add(Conv2D(filters = 32,kernel_size = (3, 3), activation = "relu"))
classifier.add(MaxPooling2D(pool_size = (2,2)))
#este dropout desactiva el 25% de las conexiones entre las neuronas, lo cual mejora los resultados
classifier.add(Dropout(0.25 )) # NUEVO
# Paso 3 - Flattening
#classifier.add(Flatten())
#################################################################
classifier.add(Conv2D(filters = 32,kernel_size = (3, 3),
input_shape = (64, 64, 3), activation = "relu"))
# Paso 2 - Max Pooling
classifier.add(MaxPooling2D(pool_size = (2,2)))
# Una segunda capa de convolución y max pooling
classifier.add(Conv2D(filters = 32,kernel_size = (3, 3), activation = "relu"))
classifier.add(MaxPooling2D(pool_size = (2,2)))
#este dropout desactiva el 25% de las conexiones entre las neuronas, lo cual mejora los resultados
classifier.add(Dropout(0.25 )) # NUEVO
# Paso 3 - Flattening
classifier.add(Flatten())
################################################################################
# Paso 4 - Full Connection
classifier.add(Dense(units = 128, activation = "relu"))
#classifier.add(Dense(units = 64, activation = "relu")) #NUEVO
classifier.add(Dense(units = 32, activation = "relu")) #NUEVO
#este dropout desactiva el 25% de las conexiones entre las neuronas, lo cual mejora los resultados
classifier.add(Dropout(0.25)) # NUEVO
classifier.add(Dense(units = 1, activation = "sigmoid"))
# Compilar la CNN
classifier.compile(optimizer = "RMSprop", loss = "binary_crossentropy", metrics = ["accuracy"]) #NUEVO
#classifier.compile(optimizer = "adam", loss = "binary_crossentropy", metrics = ["accuracy"])
# Parte 2 - Ajustar la CNN a las imágenes para entrenar
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(
rescale=1./255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
training_dataset = train_datagen.flow_from_directory('dataset/training_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
testing_dataset = test_datagen.flow_from_directory('dataset/test_set',
target_size=(64, 64),
batch_size=32,
class_mode='binary')
#NUEVO #NUEVO #NUEVO #NUEVO #NUEVO #NUEVO #NUEVO #NUEVO #NUEVO #NUEVO
# A los 15 valores de coste sin variar significativamente deja de ajustar el modelo
earlystopper = EarlyStopping(monitor='val_loss', min_delta=0.01, patience=100, verbose=1, mode='auto')
# Ajusta el modelo a más de 1000 iteraciones con el 'earlystopper' y lo asigna al historial
history = classifier.fit_generator(training_dataset,
steps_per_epoch=350,
epochs=50,
validation_data=testing_dataset,
validation_steps=200,
callbacks = [earlystopper])
# Plots 'history'
history_dict=history.history
loss_values = history_dict['loss']
val_loss_values=history_dict['val_loss']
plt.plot(loss_values,'bo',label='training loss')
plt.plot(val_loss_values,'r',label='training loss val')
plt.show()
# Parte 3 - Cómo hacer nuevas predicciones
#import numpy as np
from keras.preprocessing import image
test_image = image.load_img('dataset/single_prediction/cat_or_dog_1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
training_dataset.class_indices
if result[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'