forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathresnet_cifar_test.py
187 lines (155 loc) · 5.69 KB
/
resnet_cifar_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test the keras ResNet model with Cifar data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tempfile
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.platform import googletest
from official.utils.misc import keras_utils
from official.utils.testing import integration
from official.vision.image_classification import cifar_preprocessing
from official.vision.image_classification import resnet_cifar_main
class KerasCifarTest(googletest.TestCase):
"""Unit tests for Keras ResNet with Cifar."""
_extra_flags = [
"-batch_size", "4",
"-train_steps", "1",
"-use_synthetic_data", "true"
]
_tempdir = None
def get_temp_dir(self):
if not self._tempdir:
self._tempdir = tempfile.mkdtemp(dir=googletest.GetTempDir())
return self._tempdir
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(KerasCifarTest, cls).setUpClass()
resnet_cifar_main.define_cifar_flags()
def setUp(self):
super(KerasCifarTest, self).setUp()
cifar_preprocessing.NUM_IMAGES["validation"] = 4
def tearDown(self):
super(KerasCifarTest, self).tearDown()
tf.io.gfile.rmtree(self.get_temp_dir())
def test_end_to_end_no_dist_strat(self):
"""Test Keras model with 1 GPU, no distribution strategy."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
extra_flags = [
"-distribution_strategy", "off",
"-model_dir", "keras_cifar_no_dist_strat",
"-data_format", "channels_last",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
def test_end_to_end_graph_no_dist_strat(self):
"""Test Keras model in legacy graph mode with 1 GPU, no dist strat."""
extra_flags = [
"-enable_eager", "false",
"-distribution_strategy", "off",
"-model_dir", "keras_cifar_graph_no_dist_strat",
"-data_format", "channels_last",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
def test_end_to_end_1_gpu(self):
"""Test Keras model with 1 GPU."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 1:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(1, context.num_gpus()))
extra_flags = [
"-num_gpus", "1",
"-distribution_strategy", "default",
"-model_dir", "keras_cifar_1_gpu",
"-data_format", "channels_last",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
def test_end_to_end_graph_1_gpu(self):
"""Test Keras model in legacy graph mode with 1 GPU."""
if context.num_gpus() < 1:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(1, context.num_gpus()))
extra_flags = [
"-num_gpus", "1",
"-noenable_eager",
"-distribution_strategy", "default",
"-model_dir", "keras_cifar_graph_1_gpu",
"-data_format", "channels_last",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
def test_end_to_end_2_gpu(self):
"""Test Keras model with 2 GPUs."""
config = keras_utils.get_config_proto_v1()
tf.compat.v1.enable_eager_execution(config=config)
if context.num_gpus() < 2:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(2, context.num_gpus()))
extra_flags = [
"-num_gpus", "2",
"-distribution_strategy", "default",
"-model_dir", "keras_cifar_2_gpu",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
def test_end_to_end_graph_2_gpu(self):
"""Test Keras model in legacy graph mode with 2 GPUs."""
if context.num_gpus() < 2:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(2, context.num_gpus()))
extra_flags = [
"-num_gpus", "2",
"-enable_eager", "false",
"-distribution_strategy", "default",
"-model_dir", "keras_cifar_graph_2_gpu",
]
extra_flags = extra_flags + self._extra_flags
integration.run_synthetic(
main=resnet_cifar_main.run,
tmp_root=self.get_temp_dir(),
extra_flags=extra_flags
)
if __name__ == "__main__":
googletest.main()