forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcommon_test.py
110 lines (88 loc) · 3.59 KB
/
common_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for the common module."""
from __future__ import absolute_import
from __future__ import print_function
# pylint: disable=g-bad-import-order
from mock import Mock
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import googletest
from official.utils.misc import keras_utils
from official.vision.image_classification import common
class KerasCommonTests(tf.test.TestCase):
"""Tests for common."""
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(KerasCommonTests, cls).setUpClass()
def test_build_stats(self):
history = self._build_history(1.145, cat_accuracy=.99988)
eval_output = self._build_eval_output(.56432111, 5.990)
th = keras_utils.TimeHistory(128, 100)
th.timestamp_log = [keras_utils.BatchTimestamp(0, 1),
keras_utils.BatchTimestamp(1, 2),
keras_utils.BatchTimestamp(2, 3)]
th.train_finish_time = 12345
stats = common.build_stats(history, eval_output, [th])
self.assertEqual(1.145, stats['loss'])
self.assertEqual(.99988, stats['training_accuracy_top_1'])
self.assertEqual(.56432111, stats['accuracy_top_1'])
self.assertEqual(5.990, stats['eval_loss'])
self.assertEqual(3, stats['step_timestamp_log'][2].timestamp)
self.assertEqual(12345, stats['train_finish_time'])
def test_build_stats_sparse(self):
history = self._build_history(1.145, cat_accuracy_sparse=.99988)
eval_output = self._build_eval_output(.928, 1.9844)
stats = common.build_stats(history, eval_output, None)
self.assertEqual(1.145, stats['loss'])
self.assertEqual(.99988, stats['training_accuracy_top_1'])
self.assertEqual(.928, stats['accuracy_top_1'])
self.assertEqual(1.9844, stats['eval_loss'])
def test_time_history(self):
th = keras_utils.TimeHistory(batch_size=128, log_steps=3)
th.on_train_begin()
th.on_batch_begin(0)
th.on_batch_end(0)
th.on_batch_begin(1)
th.on_batch_end(1)
th.on_batch_begin(2)
th.on_batch_end(2)
th.on_batch_begin(3)
th.on_batch_end(3)
th.on_batch_begin(4)
th.on_batch_end(4)
th.on_batch_begin(5)
th.on_batch_end(5)
th.on_batch_begin(6)
th.on_batch_end(6)
th.on_train_end()
self.assertEqual(3, len(th.timestamp_log))
def _build_history(self, loss, cat_accuracy=None,
cat_accuracy_sparse=None):
history_p = Mock()
history = {}
history_p.history = history
history['loss'] = [np.float64(loss)]
if cat_accuracy:
history['categorical_accuracy'] = [np.float64(cat_accuracy)]
if cat_accuracy_sparse:
history['sparse_categorical_accuracy'] = [np.float64(cat_accuracy_sparse)]
return history_p
def _build_eval_output(self, top_1, eval_loss):
eval_output = [np.float64(eval_loss), np.float64(top_1)]
return eval_output
if __name__ == '__main__':
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
googletest.main()