forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcifar_preprocessing.py
164 lines (134 loc) · 5.75 KB
/
cifar_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Provides utilities to Cifar-10 dataset."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
from absl import logging
import tensorflow as tf
from official.vision.image_classification import imagenet_preprocessing
HEIGHT = 32
WIDTH = 32
NUM_CHANNELS = 3
_DEFAULT_IMAGE_BYTES = HEIGHT * WIDTH * NUM_CHANNELS
# The record is the image plus a one-byte label
_RECORD_BYTES = _DEFAULT_IMAGE_BYTES + 1
# TODO(tobyboyd): Change to best practice 45K(train)/5K(val)/10K(test) splits.
NUM_IMAGES = {
'train': 50000,
'validation': 10000,
}
_NUM_DATA_FILES = 5
NUM_CLASSES = 10
def parse_record(raw_record, is_training, dtype):
"""Parses a record containing a training example of an image.
The input record is parsed into a label and image, and the image is passed
through preprocessing steps (cropping, flipping, and so on).
This method converts the label to one hot to fit the loss function.
Args:
raw_record: scalar Tensor tf.string containing a serialized
Example protocol buffer.
is_training: A boolean denoting whether the input is for training.
dtype: Data type to use for input images.
Returns:
Tuple with processed image tensor and one-hot-encoded label tensor.
"""
# Convert bytes to a vector of uint8 that is record_bytes long.
record_vector = tf.io.decode_raw(raw_record, tf.uint8)
# The first byte represents the label, which we convert from uint8 to int32
# and then to one-hot.
label = tf.cast(record_vector[0], tf.int32)
# The remaining bytes after the label represent the image, which we reshape
# from [depth * height * width] to [depth, height, width].
depth_major = tf.reshape(record_vector[1:_RECORD_BYTES],
[NUM_CHANNELS, HEIGHT, WIDTH])
# Convert from [depth, height, width] to [height, width, depth], and cast as
# float32.
image = tf.cast(tf.transpose(a=depth_major, perm=[1, 2, 0]), tf.float32)
image = preprocess_image(image, is_training)
image = tf.cast(image, dtype)
# TODO(haoyuzhang,hongkuny,tobyboyd): Remove or replace the use of V1 API
label = tf.compat.v1.sparse_to_dense(label, (NUM_CLASSES,), 1)
return image, label
def preprocess_image(image, is_training):
"""Preprocess a single image of layout [height, width, depth]."""
if is_training:
# Resize the image to add four extra pixels on each side.
image = tf.image.resize_with_crop_or_pad(
image, HEIGHT + 8, WIDTH + 8)
# Randomly crop a [HEIGHT, WIDTH] section of the image.
image = tf.image.random_crop(image, [HEIGHT, WIDTH, NUM_CHANNELS])
# Randomly flip the image horizontally.
image = tf.image.random_flip_left_right(image)
# Subtract off the mean and divide by the variance of the pixels.
image = tf.image.per_image_standardization(image)
return image
def get_filenames(is_training, data_dir):
"""Returns a list of filenames."""
assert tf.io.gfile.exists(data_dir), (
'Run cifar10_download_and_extract.py first to download and extract the '
'CIFAR-10 data.')
if is_training:
return [
os.path.join(data_dir, 'data_batch_%d.bin' % i)
for i in range(1, _NUM_DATA_FILES + 1)
]
else:
return [os.path.join(data_dir, 'test_batch.bin')]
def input_fn(is_training,
data_dir,
batch_size,
num_epochs=1,
dtype=tf.float32,
datasets_num_private_threads=None,
parse_record_fn=parse_record,
input_context=None,
drop_remainder=False):
"""Input function which provides batches for train or eval.
Args:
is_training: A boolean denoting whether the input is for training.
data_dir: The directory containing the input data.
batch_size: The number of samples per batch.
num_epochs: The number of epochs to repeat the dataset.
dtype: Data type to use for images/features
datasets_num_private_threads: Number of private threads for tf.data.
parse_record_fn: Function to use for parsing the records.
input_context: A `tf.distribute.InputContext` object passed in by
`tf.distribute.Strategy`.
drop_remainder: A boolean indicates whether to drop the remainder of the
batches. If True, the batch dimension will be static.
Returns:
A dataset that can be used for iteration.
"""
filenames = get_filenames(is_training, data_dir)
dataset = tf.data.FixedLengthRecordDataset(filenames, _RECORD_BYTES)
if input_context:
logging.info(
'Sharding the dataset: input_pipeline_id=%d num_input_pipelines=%d',
input_context.input_pipeline_id, input_context.num_input_pipelines)
dataset = dataset.shard(input_context.num_input_pipelines,
input_context.input_pipeline_id)
return imagenet_preprocessing.process_record_dataset(
dataset=dataset,
is_training=is_training,
batch_size=batch_size,
shuffle_buffer=NUM_IMAGES['train'],
parse_record_fn=parse_record_fn,
num_epochs=num_epochs,
dtype=dtype,
datasets_num_private_threads=datasets_num_private_threads,
drop_remainder=drop_remainder
)