forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer_main.py
469 lines (402 loc) · 17.8 KB
/
transformer_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Train and evaluate the Transformer model.
See README for description of setting the training schedule and evaluating the
BLEU score.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import tempfile
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: disable=g-bad-import-order
from official.transformer import compute_bleu
from official.transformer.utils import tokenizer
from official.transformer.v2 import data_pipeline
from official.transformer.v2 import metrics
from official.transformer.v2 import misc
from official.transformer.v2 import optimizer
from official.transformer.v2 import transformer
from official.transformer.v2 import translate
from official.utils.flags import core as flags_core
from official.utils.logs import logger
from official.utils.misc import keras_utils
from official.utils.misc import distribution_utils
INF = int(1e9)
BLEU_DIR = "bleu"
_SINGLE_SAMPLE = 1
def translate_and_compute_bleu(model,
params,
subtokenizer,
bleu_source,
bleu_ref,
distribution_strategy=None):
"""Translate file and report the cased and uncased bleu scores.
Args:
model: A Keras model, used to generate the translations.
params: A dictionary, containing the translation related parameters.
subtokenizer: A subtokenizer object, used for encoding and decoding source
and translated lines.
bleu_source: A file containing source sentences for translation.
bleu_ref: A file containing the reference for the translated sentences.
distribution_strategy: A platform distribution strategy, used for TPU based
translation.
Returns:
uncased_score: A float, the case insensitive BLEU score.
cased_score: A float, the case sensitive BLEU score.
"""
# Create temporary file to store translation.
tmp = tempfile.NamedTemporaryFile(delete=False)
tmp_filename = tmp.name
translate.translate_file(
model,
params,
subtokenizer,
bleu_source,
output_file=tmp_filename,
print_all_translations=False,
distribution_strategy=distribution_strategy)
# Compute uncased and cased bleu scores.
uncased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, False)
cased_score = compute_bleu.bleu_wrapper(bleu_ref, tmp_filename, True)
os.remove(tmp_filename)
return uncased_score, cased_score
def evaluate_and_log_bleu(model,
params,
bleu_source,
bleu_ref,
vocab_file,
distribution_strategy=None):
"""Calculate and record the BLEU score.
Args:
model: A Keras model, used to generate the translations.
params: A dictionary, containing the translation related parameters.
bleu_source: A file containing source sentences for translation.
bleu_ref: A file containing the reference for the translated sentences.
vocab_file: A file containing the vocabulary for translation.
distribution_strategy: A platform distribution strategy, used for TPU based
translation.
Returns:
uncased_score: A float, the case insensitive BLEU score.
cased_score: A float, the case sensitive BLEU score.
"""
subtokenizer = tokenizer.Subtokenizer(vocab_file)
uncased_score, cased_score = translate_and_compute_bleu(
model, params, subtokenizer, bleu_source, bleu_ref, distribution_strategy)
logging.info("Bleu score (uncased): %s", uncased_score)
logging.info("Bleu score (cased): %s", cased_score)
return uncased_score, cased_score
class TransformerTask(object):
"""Main entry of Transformer model."""
def __init__(self, flags_obj):
"""Init function of TransformerMain.
Args:
flags_obj: Object containing parsed flag values, i.e., FLAGS.
Raises:
ValueError: if not using static batch for input data on TPU.
"""
self.flags_obj = flags_obj
self.predict_model = None
# Add flag-defined parameters to params object
num_gpus = flags_core.get_num_gpus(flags_obj)
self.params = params = misc.get_model_params(flags_obj.param_set, num_gpus)
params["num_gpus"] = num_gpus
params["use_ctl"] = flags_obj.use_ctl
params["data_dir"] = flags_obj.data_dir
params["model_dir"] = flags_obj.model_dir
params["static_batch"] = flags_obj.static_batch
params["max_length"] = flags_obj.max_length
params["decode_batch_size"] = flags_obj.decode_batch_size
params["decode_max_length"] = flags_obj.decode_max_length
params["padded_decode"] = flags_obj.padded_decode
params["num_parallel_calls"] = (
flags_obj.num_parallel_calls or tf.data.experimental.AUTOTUNE)
params["use_synthetic_data"] = flags_obj.use_synthetic_data
params["batch_size"] = flags_obj.batch_size or params["default_batch_size"]
params["repeat_dataset"] = None
params["dtype"] = flags_core.get_tf_dtype(flags_obj)
params["enable_metrics_in_training"] = flags_obj.enable_metrics_in_training
if params["dtype"] == tf.float16:
# TODO(reedwm): It's pretty ugly to set the global policy in a constructor
# like this. What if multiple instances of TransformerTask are created?
# We should have a better way in the tf.keras.mixed_precision API of doing
# this.
loss_scale = flags_core.get_loss_scale(flags_obj,
default_for_fp16="dynamic")
policy = tf.compat.v2.keras.mixed_precision.experimental.Policy(
"mixed_float16", loss_scale=loss_scale)
tf.compat.v2.keras.mixed_precision.experimental.set_policy(policy)
self.distribution_strategy = distribution_utils.get_distribution_strategy(
distribution_strategy=flags_obj.distribution_strategy,
num_gpus=num_gpus,
tpu_address=flags_obj.tpu or "")
if self.use_tpu:
params["num_replicas"] = self.distribution_strategy.num_replicas_in_sync
if not params["static_batch"]:
raise ValueError("TPU requires static batch for input data.")
else:
logging.info("Running transformer with num_gpus =", num_gpus)
if self.distribution_strategy:
logging.info("For training, using distribution strategy: ",
self.distribution_strategy)
else:
logging.info("Not using any distribution strategy.")
@property
def use_tpu(self):
if self.distribution_strategy:
return isinstance(self.distribution_strategy,
tf.distribute.experimental.TPUStrategy)
return False
def train(self):
"""Trains the model."""
params = self.params
flags_obj = self.flags_obj
# Sets config options.
keras_utils.set_session_config(
enable_xla=flags_obj.enable_xla)
_ensure_dir(flags_obj.model_dir)
with distribution_utils.get_strategy_scope(self.distribution_strategy):
model = transformer.create_model(params, is_train=True)
opt = self._create_optimizer()
current_step = 0
checkpoint = tf.train.Checkpoint(model=model, optimizer=opt)
latest_checkpoint = tf.train.latest_checkpoint(flags_obj.model_dir)
if latest_checkpoint:
checkpoint.restore(latest_checkpoint)
logging.info("Loaded checkpoint %s", latest_checkpoint)
current_step = opt.iterations.numpy()
if params["use_ctl"]:
train_loss_metric = tf.keras.metrics.Mean(
"training_loss", dtype=tf.float32)
else:
model.compile(opt)
model.summary()
if self.use_tpu:
# Different from experimental_distribute_dataset,
# experimental_distribute_datasets_from_function requires
# per-replica/local batch size.
params["batch_size"] /= self.distribution_strategy.num_replicas_in_sync
train_ds = (
self.distribution_strategy
.experimental_distribute_datasets_from_function(
lambda ctx: data_pipeline.train_input_fn(params, ctx)))
else:
train_ds = data_pipeline.train_input_fn(params)
map_data_fn = data_pipeline.map_data_for_transformer_fn
train_ds = train_ds.map(
map_data_fn, num_parallel_calls=params["num_parallel_calls"])
if params["use_ctl"]:
train_ds_iterator = iter(train_ds)
callbacks = self._create_callbacks(flags_obj.model_dir, 0, params)
# TODO(b/139418525): Refactor the custom training loop logic.
@tf.function
def train_steps(iterator, steps):
"""Training steps function for TPU runs.
Args:
iterator: The input iterator of the training dataset.
steps: An integer, the number of training steps.
Returns:
A float, the loss value.
"""
def _step_fn(inputs):
"""Per-replica step function."""
inputs, targets = inputs
with tf.GradientTape() as tape:
logits = model([inputs, targets], training=True)
loss = metrics.transformer_loss(logits, targets,
params["label_smoothing"],
params["vocab_size"])
# Scales the loss, which results in using the average loss across all
# of the replicas for backprop.
scaled_loss = loss / self.distribution_strategy.num_replicas_in_sync
# De-dupes variables due to keras tracking issues.
tvars = list({id(v): v for v in model.trainable_variables}.values())
grads = tape.gradient(scaled_loss, tvars)
opt.apply_gradients(zip(grads, tvars))
# For reporting, the metric takes the mean of losses.
train_loss_metric.update_state(loss)
for _ in tf.range(steps):
train_loss_metric.reset_states()
self.distribution_strategy.experimental_run_v2(
_step_fn, args=(next(iterator),))
cased_score, uncased_score = None, None
cased_score_history, uncased_score_history = [], []
while current_step < flags_obj.train_steps:
remaining_steps = flags_obj.train_steps - current_step
train_steps_per_eval = (
remaining_steps if remaining_steps < flags_obj.steps_between_evals
else flags_obj.steps_between_evals)
current_iteration = current_step // flags_obj.steps_between_evals
logging.info(
"Start train iteration at global step:{}".format(current_step))
history = None
if params["use_ctl"]:
if not self.use_tpu:
raise NotImplementedError(
"Custom training loop on GPUs is not implemented.")
# Runs training steps.
train_steps(train_ds_iterator,
tf.convert_to_tensor(train_steps_per_eval, dtype=tf.int32))
current_step += train_steps_per_eval
train_loss = train_loss_metric.result().numpy().astype(float)
logging.info("Train Step: %d/%d / loss = %s",
current_step, flags_obj.train_steps, train_loss)
checkpoint_name = checkpoint.save(
os.path.join(
flags_obj.model_dir,
"ctl_step_{}.ckpt".format(current_step)))
logging.info("Saved checkpoint to %s", checkpoint_name)
else:
if self.use_tpu:
raise NotImplementedError(
"Keras model.fit on TPUs is not implemented.")
history = model.fit(
train_ds,
initial_epoch=current_iteration,
epochs=current_iteration + 1,
steps_per_epoch=train_steps_per_eval,
callbacks=callbacks,
# If TimeHistory is enabled, progress bar would be messy. Increase
# the verbose level to get rid of it.
verbose=(2 if flags_obj.enable_time_history else 1))
current_step += train_steps_per_eval
logging.info("Train history: {}".format(history.history))
logging.info("End train iteration at global step:{}".format(current_step))
if (flags_obj.bleu_source and flags_obj.bleu_ref):
uncased_score, cased_score = self.eval()
cased_score_history.append([current_iteration + 1, cased_score])
uncased_score_history.append([current_iteration + 1, uncased_score])
stats = ({
"loss": train_loss
} if history is None else misc.build_stats(history, callbacks))
if uncased_score and cased_score:
stats["bleu_uncased"] = uncased_score
stats["bleu_cased"] = cased_score
stats["bleu_uncased_history"] = uncased_score_history
stats["bleu_cased_history"] = cased_score_history
return stats
def eval(self):
"""Evaluates the model."""
with distribution_utils.get_strategy_scope(self.distribution_strategy):
if not self.predict_model:
self.predict_model = transformer.create_model(self.params, False)
self._load_weights_if_possible(
self.predict_model,
tf.train.latest_checkpoint(self.flags_obj.model_dir))
self.predict_model.summary()
return evaluate_and_log_bleu(
self.predict_model, self.params, self.flags_obj.bleu_source,
self.flags_obj.bleu_ref, self.flags_obj.vocab_file,
self.distribution_strategy if self.use_tpu else None)
def predict(self):
"""Predicts result from the model."""
params = self.params
flags_obj = self.flags_obj
with tf.name_scope("model"):
model = transformer.create_model(params, is_train=False)
self._load_weights_if_possible(
model, tf.train.latest_checkpoint(self.flags_obj.model_dir))
model.summary()
subtokenizer = tokenizer.Subtokenizer(flags_obj.vocab_file)
ds = data_pipeline.eval_input_fn(params)
ds = ds.map(lambda x, y: x).take(_SINGLE_SAMPLE)
ret = model.predict(ds)
val_outputs, _ = ret
length = len(val_outputs)
for i in range(length):
translate.translate_from_input(val_outputs[i], subtokenizer)
def _create_callbacks(self, cur_log_dir, init_steps, params):
"""Creates a list of callbacks."""
sfunc = optimizer.LearningRateFn(params["learning_rate"],
params["hidden_size"],
params["learning_rate_warmup_steps"])
scheduler_callback = optimizer.LearningRateScheduler(sfunc, init_steps)
callbacks = misc.get_callbacks()
callbacks.append(scheduler_callback)
ckpt_full_path = os.path.join(cur_log_dir, "cp-{epoch:04d}.ckpt")
callbacks.append(tf.keras.callbacks.ModelCheckpoint(ckpt_full_path,
save_weights_only=True))
return callbacks
def _load_weights_if_possible(self, model, init_weight_path=None):
"""Loads model weights when it is provided."""
if init_weight_path:
logging.info("Load weights: {}".format(init_weight_path))
# TODO(b/139414977): Having the same variable restoring method for both
# TPU and GPU.
if self.use_tpu:
checkpoint = tf.train.Checkpoint(
model=model, optimizer=self._create_optimizer())
checkpoint.restore(init_weight_path)
else:
model.load_weights(init_weight_path)
else:
logging.info("Weights not loaded from path:{}".format(init_weight_path))
def _create_optimizer(self):
"""Creates optimizer."""
params = self.params
# TODO(b/139414679): Explore the difference between using
# LearningRateSchedule and callback for GPU runs, and try to merge them.
lr_schedule = optimizer.LearningRateSchedule(
params["learning_rate"], params["hidden_size"],
params["learning_rate_warmup_steps"])
opt = tf.keras.optimizers.Adam(
lr_schedule if self.use_tpu else params["learning_rate"],
params["optimizer_adam_beta1"],
params["optimizer_adam_beta2"],
epsilon=params["optimizer_adam_epsilon"])
if params["dtype"] == tf.float16:
opt = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
opt, loss_scale=flags_core.get_loss_scale(self.flags_obj,
default_for_fp16="dynamic"))
if self.flags_obj.fp16_implementation == "graph_rewrite":
# Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
# determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
# which will ensure tf.compat.v2.keras.mixed_precision and
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
# up.
opt = tf.train.experimental.enable_mixed_precision_graph_rewrite(opt)
return opt
def _ensure_dir(log_dir):
"""Makes log dir if not existed."""
if not tf.io.gfile.exists(log_dir):
tf.io.gfile.makedirs(log_dir)
def main(_):
flags_obj = flags.FLAGS
with logger.benchmark_context(flags_obj):
task = TransformerTask(flags_obj)
def _run_task(task):
if flags_obj.mode == "train":
task.train()
elif flags_obj.mode == "predict":
task.predict()
elif flags_obj.mode == "eval":
task.eval()
else:
raise ValueError("Invalid mode {}".format(flags_obj.mode))
if flags_obj.distribution_strategy != "tpu":
_run_task(task)
else:
primary_cpu_task = "/job:worker" if flags_obj.use_tpu_2vm_config else ""
with tf.device(primary_cpu_task):
_run_task(task)
if __name__ == "__main__":
tf.compat.v1.enable_v2_behavior()
logging.set_verbosity(logging.INFO)
misc.define_transformer_flags()
app.run(main)