forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_utils_test.py
74 lines (59 loc) · 2.62 KB
/
model_utils_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Test Transformer model helper methods."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.transformer.model import model_utils
from official.utils.misc import keras_utils
NEG_INF = -1e9
class ModelUtilsTest(tf.test.TestCase):
def setUp(self):
super(ModelUtilsTest, self).setUp()
if keras_utils.is_v2_0:
tf.compat.v1.disable_eager_execution()
def test_get_padding(self):
x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]])
padding = model_utils.get_padding(x, padding_value=0)
with self.session() as sess:
padding = sess.run(padding)
self.assertAllEqual([[0, 1, 1, 1, 0], [0, 0, 1, 1, 1], [1, 0, 0, 1, 0]],
padding)
def test_get_padding_bias(self):
x = tf.constant([[1, 0, 0, 0, 2], [3, 4, 0, 0, 0], [0, 5, 6, 0, 7]])
bias = model_utils.get_padding_bias(x)
bias_shape = tf.shape(bias)
flattened_bias = tf.reshape(bias, [3, 5])
with self.session() as sess:
flattened_bias, bias_shape = sess.run((flattened_bias, bias_shape))
self.assertAllEqual([[0, NEG_INF, NEG_INF, NEG_INF, 0],
[0, 0, NEG_INF, NEG_INF, NEG_INF],
[NEG_INF, 0, 0, NEG_INF, 0]],
flattened_bias)
self.assertAllEqual([3, 1, 1, 5], bias_shape)
def test_get_decoder_self_attention_bias(self):
length = 5
bias = model_utils.get_decoder_self_attention_bias(length)
with self.session() as sess:
bias = sess.run(bias)
self.assertAllEqual([[[[0, NEG_INF, NEG_INF, NEG_INF, NEG_INF],
[0, 0, NEG_INF, NEG_INF, NEG_INF],
[0, 0, 0, NEG_INF, NEG_INF],
[0, 0, 0, 0, NEG_INF],
[0, 0, 0, 0, 0]]]],
bias)
if __name__ == "__main__":
tf.test.main()