forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeam_search.py
667 lines (551 loc) · 26.1 KB
/
beam_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Beam search to find the translated sequence with the highest probability.
Source implementation from Tensor2Tensor:
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/beam_search.py
"""
import numpy as np
import tensorflow as tf
from tensorflow.python.util import nest
def inf(dtype):
"""Returns a value close to infinity, but is still finite in `dtype`.
This is useful to get a very large value that is still zero when multiplied by
zero. The floating-point "Inf" value is NaN when multiplied by zero.
Args:
dtype: A dtype. The returned value will be finite when casted to this dtype.
Returns:
A very large value.
"""
if dtype == "float32":
return 1e7
elif dtype == "float16":
# Disable no-member lint error, as the linter thinks np.float16 does not
# exist for some reason.
return np.finfo(np.float16).max # pylint: disable=no-member
else:
raise AssertionError('Invalid dtype: %s' % dtype)
class _StateKeys(object):
"""Keys to dictionary storing the state of the beam search loop."""
# Variable storing the loop index.
CUR_INDEX = "CUR_INDEX"
# Top sequences that are alive for each batch item. Alive sequences are ones
# that have not generated an EOS token. Sequences that reach EOS are marked as
# finished and moved to the FINISHED_SEQ tensor.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]
ALIVE_SEQ = "ALIVE_SEQ"
# Log probabilities of each alive sequence. Shape [batch_size, beam_size]
ALIVE_LOG_PROBS = "ALIVE_LOG_PROBS"
# Dictionary of cached values for each alive sequence. The cache stores
# the encoder output, attention bias, and the decoder attention output from
# the previous iteration.
ALIVE_CACHE = "ALIVE_CACHE"
# Top finished sequences for each batch item.
# Has shape [batch_size, beam_size, CUR_INDEX + 1]. Sequences that are
# shorter than CUR_INDEX + 1 are padded with 0s.
FINISHED_SEQ = "FINISHED_SEQ"
# Scores for each finished sequence. Score = log probability / length norm
# Shape [batch_size, beam_size]
FINISHED_SCORES = "FINISHED_SCORES"
# Flags indicating which sequences in the finished sequences are finished.
# At the beginning, all of the sequences in FINISHED_SEQ are filler values.
# True -> finished sequence, False -> filler. Shape [batch_size, beam_size]
FINISHED_FLAGS = "FINISHED_FLAGS"
class SequenceBeamSearch(object):
"""Implementation of beam search loop."""
def __init__(self,
symbols_to_logits_fn,
vocab_size,
batch_size,
beam_size,
alpha,
max_decode_length,
eos_id,
padded_decode,
dtype=tf.float32):
"""Initialize sequence beam search.
Args:
symbols_to_logits_fn: A function to provide logits, which is the
interface to the Transformer model. The passed in arguments are:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and the updated cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
updated cache -> A nested dictionary with the same structure as the
input cache.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
batch_size: An integer, the decode batch size.
beam_size: An integer, number of beams for beam search.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum number of steps to decode
a sequence.
eos_id: An integer. ID of end of sentence token.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
dtype: A tensorflow data type used for score computation. The default is
tf.float32.
"""
self.symbols_to_logits_fn = symbols_to_logits_fn
self.vocab_size = vocab_size
self.batch_size = batch_size
self.beam_size = beam_size
self.alpha = alpha
self.max_decode_length = max_decode_length
self.eos_id = eos_id
self.padded_decode = padded_decode
self.dtype = tf.as_dtype(dtype)
def search(self, initial_ids, initial_cache):
"""Beam search for sequences with highest scores."""
state, state_shapes = self._create_initial_state(initial_ids, initial_cache)
finished_state = tf.while_loop(
self._continue_search, self._search_step, loop_vars=[state],
shape_invariants=[state_shapes], parallel_iterations=1, back_prop=False)
finished_state = finished_state[0]
alive_seq = finished_state[_StateKeys.ALIVE_SEQ]
alive_log_probs = finished_state[_StateKeys.ALIVE_LOG_PROBS]
finished_seq = finished_state[_StateKeys.FINISHED_SEQ]
finished_scores = finished_state[_StateKeys.FINISHED_SCORES]
finished_flags = finished_state[_StateKeys.FINISHED_FLAGS]
# Account for corner case where there are no finished sequences for a
# particular batch item. In that case, return alive sequences for that batch
# item.
finished_seq = tf.where(
tf.reduce_any(finished_flags, 1), finished_seq, alive_seq)
finished_scores = tf.where(
tf.reduce_any(finished_flags, 1), finished_scores, alive_log_probs)
return finished_seq, finished_scores
def _create_initial_state(self, initial_ids, initial_cache):
"""Return initial state dictionary and its shape invariants.
Args:
initial_ids: initial ids to pass into the symbols_to_logits_fn.
int tensor with shape [batch_size, 1]
initial_cache: dictionary storing values to be passed into the
symbols_to_logits_fn.
Returns:
state and shape invariant dictionaries with keys from _StateKeys
"""
for key, value in initial_cache.items():
for inner_value in nest.flatten(value):
if inner_value.dtype != self.dtype:
raise TypeError(
"initial_cache element for key '%s' has dtype %s that does not "
"match SequenceBeamSearch's dtype of %s. Value: %s" %
(key, value.dtype.name, self.dtype.name, inner_value))
# Current loop index (starts at 0)
cur_index = tf.constant(0)
# Create alive sequence with shape [batch_size, beam_size, 1]
alive_seq = _expand_to_beam_size(initial_ids, self.beam_size)
alive_seq = tf.expand_dims(alive_seq, axis=2)
if self.padded_decode:
alive_seq = tf.tile(alive_seq, [1, 1, self.max_decode_length + 1])
# Create tensor for storing initial log probabilities.
# Assume initial_ids are prob 1.0
initial_log_probs = tf.constant(
[[0.] + [-float("inf")] * (self.beam_size - 1)], dtype=self.dtype)
alive_log_probs = tf.tile(initial_log_probs, [self.batch_size, 1])
# Expand all values stored in the dictionary to the beam size, so that each
# beam has a separate cache.
alive_cache = nest.map_structure(
lambda t: _expand_to_beam_size(t, self.beam_size), initial_cache)
# Initialize tensor storing finished sequences with filler values.
finished_seq = tf.zeros(tf.shape(alive_seq), tf.int32)
# Set scores of the initial finished seqs to negative infinity.
finished_scores = tf.ones([self.batch_size, self.beam_size],
dtype=self.dtype) * -inf(self.dtype)
# Initialize finished flags with all False values.
finished_flags = tf.zeros([self.batch_size, self.beam_size], tf.bool)
# Create state dictionary
state = {
_StateKeys.CUR_INDEX: cur_index,
_StateKeys.ALIVE_SEQ: alive_seq,
_StateKeys.ALIVE_LOG_PROBS: alive_log_probs,
_StateKeys.ALIVE_CACHE: alive_cache,
_StateKeys.FINISHED_SEQ: finished_seq,
_StateKeys.FINISHED_SCORES: finished_scores,
_StateKeys.FINISHED_FLAGS: finished_flags
}
# Create state invariants for each value in the state dictionary. Each
# dimension must be a constant or None. A None dimension means either:
# 1) the dimension's value is a tensor that remains the same but may
# depend on the input sequence to the model (e.g. batch size).
# 2) the dimension may have different values on different iterations.
if self.padded_decode:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape(
[self.batch_size, self.beam_size,
self.max_decode_length + 1]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([self.batch_size, self.beam_size]),
_StateKeys.ALIVE_CACHE:
nest.map_structure(_get_shape, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape(
[self.batch_size, self.beam_size,
self.max_decode_length + 1]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([self.batch_size, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([self.batch_size, self.beam_size])
}
else:
state_shape_invariants = {
_StateKeys.CUR_INDEX:
tf.TensorShape([]),
_StateKeys.ALIVE_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.ALIVE_LOG_PROBS:
tf.TensorShape([None, self.beam_size]),
_StateKeys.ALIVE_CACHE:
nest.map_structure(_get_shape_keep_last_dim, alive_cache),
_StateKeys.FINISHED_SEQ:
tf.TensorShape([None, self.beam_size, None]),
_StateKeys.FINISHED_SCORES:
tf.TensorShape([None, self.beam_size]),
_StateKeys.FINISHED_FLAGS:
tf.TensorShape([None, self.beam_size])
}
return state, state_shape_invariants
def _continue_search(self, state):
"""Return whether to continue the search loop.
The loops should terminate when
1) when decode length has been reached, or
2) when the worst score in the finished sequences is better than the best
score in the alive sequences (i.e. the finished sequences are provably
unchanging)
Args:
state: A dictionary with the current loop state.
Returns:
Bool tensor with value True if loop should continue, False if loop should
terminate.
"""
i = state[_StateKeys.CUR_INDEX]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
not_at_max_decode_length = tf.less(i, self.max_decode_length)
# Calculate largest length penalty (the larger penalty, the better score).
max_length_norm = _length_normalization(self.alpha, self.max_decode_length,
dtype=self.dtype)
# Get the best possible scores from alive sequences.
best_alive_scores = alive_log_probs[:, 0] / max_length_norm
# Compute worst score in finished sequences for each batch element
finished_scores *= tf.cast(finished_flags,
self.dtype) # set filler scores to zero
lowest_finished_scores = tf.reduce_min(finished_scores, axis=1)
# If there are no finished sequences in a batch element, then set the lowest
# finished score to -INF for that element.
finished_batches = tf.reduce_any(finished_flags, 1)
lowest_finished_scores += ((1.0 -
tf.cast(finished_batches, self.dtype)) *
-inf(self.dtype))
worst_finished_score_better_than_best_alive_score = tf.reduce_all(
tf.greater(lowest_finished_scores, best_alive_scores)
)
return tf.logical_and(
not_at_max_decode_length,
tf.logical_not(worst_finished_score_better_than_best_alive_score)
)
def _search_step(self, state):
"""Beam search loop body.
Grow alive sequences by a single ID. Sequences that have reached the EOS
token are marked as finished. The alive and finished sequences with the
highest log probabilities and scores are returned.
A sequence's finished score is calculating by dividing the log probability
by the length normalization factor. Without length normalization, the
search is more likely to return shorter sequences.
Args:
state: A dictionary with the current loop state.
Returns:
new state dictionary.
"""
# Grow alive sequences by one token.
new_seq, new_log_probs, new_cache = self._grow_alive_seq(state)
# Collect top beam_size alive sequences
alive_state = self._get_new_alive_state(new_seq, new_log_probs, new_cache)
# Combine newly finished sequences with existing finished sequences, and
# collect the top k scoring sequences.
finished_state = self._get_new_finished_state(state, new_seq, new_log_probs)
# Increment loop index and create new state dictionary
new_state = {_StateKeys.CUR_INDEX: state[_StateKeys.CUR_INDEX] + 1}
new_state.update(alive_state)
new_state.update(finished_state)
return [new_state]
def _grow_alive_seq(self, state):
"""Grow alive sequences by one token, and collect top 2*beam_size sequences.
2*beam_size sequences are collected because some sequences may have reached
the EOS token. 2*beam_size ensures that at least beam_size sequences are
still alive.
Args:
state: A dictionary with the current loop state.
Returns:
Tuple of
(Top 2*beam_size sequences [batch_size, 2 * beam_size, cur_index + 1],
Scores of returned sequences [batch_size, 2 * beam_size],
New alive cache, for each of the 2 * beam_size sequences)
"""
i = state[_StateKeys.CUR_INDEX]
alive_seq = state[_StateKeys.ALIVE_SEQ]
alive_log_probs = state[_StateKeys.ALIVE_LOG_PROBS]
alive_cache = state[_StateKeys.ALIVE_CACHE]
beams_to_keep = 2 * self.beam_size
# Get logits for the next candidate IDs for the alive sequences. Get the new
# cache values at the same time.
if self.padded_decode:
flat_ids = tf.reshape(
tf.slice(alive_seq, [0, 0, i], [self.batch_size, self.beam_size, 1]),
[self.batch_size * self.beam_size, -1])
else:
flat_ids = _flatten_beam_dim(alive_seq) # [batch_size * beam_size]
flat_cache = nest.map_structure(_flatten_beam_dim, alive_cache)
flat_logits, flat_cache = self.symbols_to_logits_fn(flat_ids, i, flat_cache)
# Unflatten logits to shape [batch_size, beam_size, vocab_size]
logits = _unflatten_beam_dim(flat_logits, self.batch_size, self.beam_size)
new_cache = nest.map_structure(
lambda t: _unflatten_beam_dim(t, self.batch_size, self.beam_size),
flat_cache)
# Convert logits to normalized log probs
candidate_log_probs = _log_prob_from_logits(logits)
# Calculate new log probabilities if each of the alive sequences were
# extended # by the the candidate IDs.
# Shape [batch_size, beam_size, vocab_size]
log_probs = candidate_log_probs + tf.expand_dims(alive_log_probs, axis=2)
# Each batch item has beam_size * vocab_size candidate sequences. For each
# batch item, get the k candidates with the highest log probabilities.
flat_log_probs = tf.reshape(log_probs,
[-1, self.beam_size * self.vocab_size])
topk_log_probs, topk_indices = tf.nn.top_k(flat_log_probs, k=beams_to_keep)
# Extract the alive sequences that generate the highest log probabilities
# after being extended.
topk_beam_indices = topk_indices // self.vocab_size
topk_seq, new_cache = _gather_beams(
[alive_seq, new_cache], topk_beam_indices, self.batch_size,
beams_to_keep)
# Append the most probable IDs to the topk sequences
topk_ids = topk_indices % self.vocab_size
if self.padded_decode:
topk_seq = tf.transpose(topk_seq, perm=[2, 0, 1])
topk_seq = tf.tensor_scatter_nd_update(topk_seq, [i + 1], topk_ids)
topk_seq = tf.transpose(topk_seq, perm=[1, 2, 0])
else:
topk_ids = tf.expand_dims(topk_ids, axis=2)
topk_seq = tf.concat([topk_seq, topk_ids], axis=2)
return topk_seq, topk_log_probs, new_cache
def _get_new_alive_state(self, new_seq, new_log_probs, new_cache):
"""Gather the top k sequences that are still alive.
Args:
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, 2 * beam_size, cur_index + 1]
new_log_probs: Log probabilities of new sequences
float32 tensor with shape [batch_size, beam_size]
new_cache: Dict of cached values for each sequence.
Returns:
Dictionary with alive keys from _StateKeys:
{Top beam_size sequences that are still alive (don't end with eos_id)
Log probabilities of top alive sequences
Dict cache storing decoder states for top alive sequences}
"""
# To prevent finished sequences from being considered, set log probs to -inf
new_finished_flags = tf.equal(new_seq[:, :, -1], self.eos_id)
new_log_probs += tf.cast(new_finished_flags, self.dtype) * -inf(self.dtype)
top_alive_seq, top_alive_log_probs, top_alive_cache = _gather_topk_beams(
[new_seq, new_log_probs, new_cache], new_log_probs, self.batch_size,
self.beam_size)
return {
_StateKeys.ALIVE_SEQ: top_alive_seq,
_StateKeys.ALIVE_LOG_PROBS: top_alive_log_probs,
_StateKeys.ALIVE_CACHE: top_alive_cache
}
def _get_new_finished_state(self, state, new_seq, new_log_probs):
"""Combine new and old finished sequences, and gather the top k sequences.
Args:
state: A dictionary with the current loop state.
new_seq: New sequences generated by growing the current alive sequences
int32 tensor with shape [batch_size, beam_size, i + 1]
new_log_probs: Log probabilities of new sequences
float32 tensor with shape [batch_size, beam_size]
Returns:
Dictionary with finished keys from _StateKeys:
{Top beam_size finished sequences based on score,
Scores of finished sequences,
Finished flags of finished sequences}
"""
i = state[_StateKeys.CUR_INDEX]
finished_seq = state[_StateKeys.FINISHED_SEQ]
finished_scores = state[_StateKeys.FINISHED_SCORES]
finished_flags = state[_StateKeys.FINISHED_FLAGS]
# First append a column of 0-ids to finished_seq to increment the length.
# New shape of finished_seq: [batch_size, beam_size, i + 1]
if not self.padded_decode:
finished_seq = tf.concat([
finished_seq,
tf.zeros([self.batch_size, self.beam_size, 1], tf.int32)
],
axis=2)
# Calculate new seq scores from log probabilities.
length_norm = _length_normalization(self.alpha, i + 1, dtype=self.dtype)
new_scores = new_log_probs / length_norm
# Set the scores of the still-alive seq in new_seq to large negative values.
new_finished_flags = tf.equal(new_seq[:, :, -1], self.eos_id)
new_scores += ((1. - tf.cast(new_finished_flags, self.dtype)) *
-inf(self.dtype))
# Combine sequences, scores, and flags.
finished_seq = tf.concat([finished_seq, new_seq], axis=1)
finished_scores = tf.concat([finished_scores, new_scores], axis=1)
finished_flags = tf.concat([finished_flags, new_finished_flags], axis=1)
# Return the finished sequences with the best scores.
top_finished_seq, top_finished_scores, top_finished_flags = (
_gather_topk_beams([finished_seq, finished_scores, finished_flags],
finished_scores, self.batch_size, self.beam_size))
return {
_StateKeys.FINISHED_SEQ: top_finished_seq,
_StateKeys.FINISHED_SCORES: top_finished_scores,
_StateKeys.FINISHED_FLAGS: top_finished_flags
}
def sequence_beam_search(
symbols_to_logits_fn, initial_ids, initial_cache, vocab_size, beam_size,
alpha, max_decode_length, eos_id, padded_decode=False):
"""Search for sequence of subtoken ids with the largest probability.
Args:
symbols_to_logits_fn: A function that takes in ids, index, and cache as
arguments. The passed in arguments will have shape:
ids -> A tensor with shape [batch_size * beam_size, index].
index -> A scalar.
cache -> A nested dictionary of tensors [batch_size * beam_size, ...].
The function must return a tuple of logits and new cache:
logits -> A tensor with shape [batch * beam_size, vocab_size].
new cache -> A nested dictionary with the same shape/structure as the
inputted cache.
initial_ids: An int32 tensor with shape [batch_size]. Starting ids for
each batch item.
initial_cache: A dictionary, containing starting decoder variables
information.
vocab_size: An integer, the size of the vocabulary, used for topk
computation.
beam_size: An integer, the number of beams.
alpha: A float, defining the strength of length normalization.
max_decode_length: An integer, the maximum length to decoded a sequence.
eos_id: An integer, ID of eos token, used to determine when a sequence has
finished.
padded_decode: A bool, indicating if max_sequence_length padding is used
for beam search.
Returns:
Top decoded sequences [batch_size, beam_size, max_decode_length]
sequence scores [batch_size, beam_size]
"""
batch_size = (
initial_ids.shape.as_list()[0] if padded_decode else
tf.shape(initial_ids)[0])
sbs = SequenceBeamSearch(symbols_to_logits_fn, vocab_size, batch_size,
beam_size, alpha, max_decode_length, eos_id,
padded_decode)
return sbs.search(initial_ids, initial_cache)
def _log_prob_from_logits(logits):
return logits - tf.reduce_logsumexp(logits, axis=2, keepdims=True)
def _length_normalization(alpha, length, dtype=tf.float32):
"""Return length normalization factor."""
return tf.pow(((5. + tf.cast(length, dtype)) / 6.), alpha)
def _expand_to_beam_size(tensor, beam_size):
"""Tiles a given tensor by beam_size.
Args:
tensor: tensor to tile [batch_size, ...]
beam_size: How much to tile the tensor by.
Returns:
Tiled tensor [batch_size, beam_size, ...]
"""
tensor = tf.expand_dims(tensor, axis=1)
tile_dims = [1] * tensor.shape.ndims
tile_dims[1] = beam_size
return tf.tile(tensor, tile_dims)
def _shape_list(tensor):
"""Return a list of the tensor's shape, and ensure no None values in list."""
# Get statically known shape (may contain None's for unknown dimensions)
shape = tensor.get_shape().as_list()
# Ensure that the shape values are not None
dynamic_shape = tf.shape(tensor)
for i in range(len(shape)): # pylint: disable=consider-using-enumerate
if shape[i] is None:
shape[i] = dynamic_shape[i]
return shape
def _get_shape_keep_last_dim(tensor):
shape_list = _shape_list(tensor)
# Only the last
for i in range(len(shape_list) - 1):
shape_list[i] = None
if isinstance(shape_list[-1], tf.Tensor):
shape_list[-1] = None
return tf.TensorShape(shape_list)
def _get_shape(tensor):
"""Return the shape of the input tensor."""
return tf.TensorShape(_shape_list(tensor))
def _flatten_beam_dim(tensor):
"""Reshapes first two dimensions in to single dimension.
Args:
tensor: Tensor to reshape of shape [A, B, ...]
Returns:
Reshaped tensor of shape [A*B, ...]
"""
shape = _shape_list(tensor)
shape[0] *= shape[1]
shape.pop(1) # Remove beam dim
return tf.reshape(tensor, shape)
def _unflatten_beam_dim(tensor, batch_size, beam_size):
"""Reshapes first dimension back to [batch_size, beam_size].
Args:
tensor: Tensor to reshape of shape [batch_size*beam_size, ...]
batch_size: Tensor, original batch size.
beam_size: int, original beam size.
Returns:
Reshaped tensor of shape [batch_size, beam_size, ...]
"""
shape = _shape_list(tensor)
new_shape = [batch_size, beam_size] + shape[1:]
return tf.reshape(tensor, new_shape)
def _gather_beams(nested, beam_indices, batch_size, new_beam_size):
"""Gather beams from nested structure of tensors.
Each tensor in nested represents a batch of beams, where beam refers to a
single search state (beam search involves searching through multiple states
in parallel).
This function is used to gather the top beams, specified by
beam_indices, from the nested tensors.
Args:
nested: Nested structure (tensor, list, tuple or dict) containing tensors
with shape [batch_size, beam_size, ...].
beam_indices: int32 tensor with shape [batch_size, new_beam_size]. Each
value in beam_indices must be between [0, beam_size), and are not
necessarily unique.
batch_size: int size of batch
new_beam_size: int number of beams to be pulled from the nested tensors.
Returns:
Nested structure containing tensors with shape
[batch_size, new_beam_size, ...]
"""
# Computes the i'th coodinate that contains the batch index for gather_nd.
# Batch pos is a tensor like [[0,0,0,0,],[1,1,1,1],..].
batch_pos = tf.range(batch_size * new_beam_size) // new_beam_size
batch_pos = tf.reshape(batch_pos, [batch_size, new_beam_size])
# Create coordinates to be passed to tf.gather_nd. Stacking creates a tensor
# with shape [batch_size, beam_size, 2], where the last dimension contains
# the (i, j) gathering coordinates.
coordinates = tf.stack([batch_pos, beam_indices], axis=2)
return nest.map_structure(
lambda state: tf.gather_nd(state, coordinates), nested)
def _gather_topk_beams(nested, score_or_log_prob, batch_size, beam_size):
"""Gather top beams from nested structure."""
_, topk_indexes = tf.nn.top_k(score_or_log_prob, k=beam_size)
return _gather_beams(nested, topk_indexes, batch_size, beam_size)