forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncf_test.py
257 lines (212 loc) · 9.94 KB
/
ncf_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests NCF."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import unittest
import mock
import numpy as np
import tensorflow as tf
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import neumf_model
from official.recommendation import ncf_common
from official.recommendation import ncf_estimator_main
from official.recommendation import ncf_keras_main
from official.utils.misc import keras_utils
from official.utils.testing import integration
from tensorflow.python.eager import context # pylint: disable=ungrouped-imports
NUM_TRAIN_NEG = 4
class NcfTest(tf.test.TestCase):
@classmethod
def setUpClass(cls): # pylint: disable=invalid-name
super(NcfTest, cls).setUpClass()
ncf_common.define_ncf_flags()
def setUp(self):
self.top_k_old = rconst.TOP_K
self.num_eval_negatives_old = rconst.NUM_EVAL_NEGATIVES
rconst.NUM_EVAL_NEGATIVES = 2
def tearDown(self):
rconst.NUM_EVAL_NEGATIVES = self.num_eval_negatives_old
rconst.TOP_K = self.top_k_old
@unittest.skipIf(keras_utils.is_v2_0(), "TODO(b/136018594)")
def get_hit_rate_and_ndcg(self, predicted_scores_by_user, items_by_user,
top_k=rconst.TOP_K, match_mlperf=False):
rconst.TOP_K = top_k
rconst.NUM_EVAL_NEGATIVES = predicted_scores_by_user.shape[1] - 1
batch_size = items_by_user.shape[0]
users = np.repeat(np.arange(batch_size)[:, np.newaxis],
rconst.NUM_EVAL_NEGATIVES + 1, axis=1)
users, items, duplicate_mask = \
data_pipeline.BaseDataConstructor._assemble_eval_batch(
users, items_by_user[:, -1:], items_by_user[:, :-1], batch_size)
g = tf.Graph()
with g.as_default():
logits = tf.convert_to_tensor(
predicted_scores_by_user.reshape((-1, 1)), tf.float32)
softmax_logits = tf.concat([tf.zeros(logits.shape, dtype=logits.dtype),
logits], axis=1)
duplicate_mask = tf.convert_to_tensor(duplicate_mask, tf.float32)
metric_ops = neumf_model._get_estimator_spec_with_metrics(
logits=logits, softmax_logits=softmax_logits,
duplicate_mask=duplicate_mask, num_training_neg=NUM_TRAIN_NEG,
match_mlperf=match_mlperf).eval_metric_ops
hr = metric_ops[rconst.HR_KEY]
ndcg = metric_ops[rconst.NDCG_KEY]
init = [tf.compat.v1.global_variables_initializer(),
tf.compat.v1.local_variables_initializer()]
with self.session(graph=g) as sess:
sess.run(init)
return sess.run([hr[1], ndcg[1]])
def test_hit_rate_and_ndcg(self):
# Test with no duplicate items
predictions = np.array([
[2., 0., 1.], # In top 2
[1., 0., 2.], # In top 1
[2., 1., 0.], # In top 3
[3., 4., 2.] # In top 3
])
items = np.array([
[2, 3, 1],
[3, 1, 2],
[2, 1, 3],
[1, 3, 2],
])
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
self.assertAlmostEqual(hr, 1 / 4)
self.assertAlmostEqual(ndcg, 1 / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
self.assertAlmostEqual(hr, 2 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
self.assertAlmostEqual(hr, 4 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
2 * math.log(2) / math.log(4)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
match_mlperf=True)
self.assertAlmostEqual(hr, 1 / 4)
self.assertAlmostEqual(ndcg, 1 / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
match_mlperf=True)
self.assertAlmostEqual(hr, 2 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
match_mlperf=True)
self.assertAlmostEqual(hr, 4 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
2 * math.log(2) / math.log(4)) / 4)
# Test with duplicate items. In the MLPerf case, we treat the duplicates as
# a single item. Otherwise, we treat the duplicates as separate items.
predictions = np.array([
[2., 2., 3., 1.], # In top 4. MLPerf: In top 3
[1., 0., 2., 3.], # In top 1. MLPerf: In top 1
[2., 3., 2., 0.], # In top 4. MLPerf: In top 3
[2., 4., 2., 3.] # In top 2. MLPerf: In top 2
])
items = np.array([
[2, 2, 3, 1],
[2, 3, 4, 1],
[2, 3, 2, 1],
[3, 2, 1, 4],
])
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1)
self.assertAlmostEqual(hr, 1 / 4)
self.assertAlmostEqual(ndcg, 1 / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2)
self.assertAlmostEqual(hr, 2 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3)
self.assertAlmostEqual(hr, 2 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4)
self.assertAlmostEqual(hr, 4 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
2 * math.log(2) / math.log(5)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 1,
match_mlperf=True)
self.assertAlmostEqual(hr, 1 / 4)
self.assertAlmostEqual(ndcg, 1 / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 2,
match_mlperf=True)
self.assertAlmostEqual(hr, 2 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 3,
match_mlperf=True)
self.assertAlmostEqual(hr, 4 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
2 * math.log(2) / math.log(4)) / 4)
hr, ndcg = self.get_hit_rate_and_ndcg(predictions, items, 4,
match_mlperf=True)
self.assertAlmostEqual(hr, 4 / 4)
self.assertAlmostEqual(ndcg, (1 + math.log(2) / math.log(3) +
2 * math.log(2) / math.log(4)) / 4)
_BASE_END_TO_END_FLAGS = ['-batch_size', '1044', '-train_epochs', '1']
@unittest.skipIf(keras_utils.is_v2_0(), "TODO(b/136018594)")
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
def test_end_to_end_estimator(self):
integration.run_synthetic(
ncf_estimator_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS)
@unittest.skipIf(keras_utils.is_v2_0(), "TODO(b/136018594)")
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
def test_end_to_end_estimator_mlperf(self):
integration.run_synthetic(
ncf_estimator_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS + ['-ml_perf', 'True'])
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
def test_end_to_end_keras_no_dist_strat(self):
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS +
['-distribution_strategy', 'off'])
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
@unittest.skipUnless(keras_utils.is_v2_0(), 'TF 2.0 only test.')
def test_end_to_end_keras_dist_strat(self):
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '0'])
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
@unittest.skipUnless(keras_utils.is_v2_0(), 'TF 2.0 only test.')
def test_end_to_end_keras_dist_strat_ctl(self):
flags = (self._BASE_END_TO_END_FLAGS +
['-num_gpus', '0'] +
['-keras_use_ctl', 'True'])
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(),
extra_flags=flags)
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
@unittest.skipUnless(keras_utils.is_v2_0(), 'TF 2.0 only test.')
def test_end_to_end_keras_1_gpu_dist_strat(self):
if context.num_gpus() < 1:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(1, context.num_gpus()))
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '1'])
@mock.patch.object(rconst, "SYNTHETIC_BATCHES_PER_EPOCH", 100)
@unittest.skipUnless(keras_utils.is_v2_0(), 'TF 2.0 only test.')
def test_end_to_end_keras_2_gpu(self):
if context.num_gpus() < 2:
self.skipTest(
"{} GPUs are not available for this test. {} GPUs are available".
format(2, context.num_gpus()))
integration.run_synthetic(
ncf_keras_main.main, tmp_root=self.get_temp_dir(),
extra_flags=self._BASE_END_TO_END_FLAGS + ['-num_gpus', '2'])
if __name__ == "__main__":
tf.test.main()