forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncf_keras_benchmark.py
419 lines (359 loc) · 13.5 KB
/
ncf_keras_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
from absl import flags
from absl.testing import flagsaver
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.recommendation import ncf_common
from official.recommendation import ncf_keras_main
from official.utils.flags import core
FLAGS = flags.FLAGS
NCF_DATA_DIR_NAME = 'movielens_data'
NCF_TF_DATA_1M_BATCH_DIR_NAME = 'gs://tf-perfzero-data/movielens_data/ncf_8gpu_1M_batch'
class NCFKerasBenchmarkBase(tf.test.Benchmark):
"""Base class for NCF model benchmark."""
local_flags = None
def __init__(self,
output_dir=None,
default_flags=None,
**kwargs):
self.output_dir = output_dir
self.default_flags = default_flags or {}
def _setup(self):
"""Sets up and resets flags before each test."""
assert tf.version.VERSION.startswith('2.')
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.DEBUG)
if NCFKerasBenchmarkBase.local_flags is None:
ncf_common.define_ncf_flags()
# Loads flags to get defaults to then override. List cannot be empty.
flags.FLAGS(['foo'])
core.set_defaults(**self.default_flags)
saved_flag_values = flagsaver.save_flag_values()
NCFKerasBenchmarkBase.local_flags = saved_flag_values
else:
flagsaver.restore_flag_values(NCFKerasBenchmarkBase.local_flags)
def _run_and_report_benchmark(self, hr_at_10_min=0, hr_at_10_max=0):
start_time_sec = time.time()
stats = ncf_keras_main.run_ncf(FLAGS)
wall_time_sec = time.time() - start_time_sec
metrics = []
metrics.append({'name': 'exp_per_second',
'value': stats['avg_exp_per_second']})
if hr_at_10_min > 0:
metrics.append({'name': 'hr_at_10',
'value': stats['eval_hit_rate'],
'min_value': hr_at_10_min,
'max_value': hr_at_10_max})
metrics.append({'name': 'train_loss',
'value': stats['loss']})
self.report_benchmark(iters=-1, wall_time=wall_time_sec, metrics=metrics)
class NCFKerasAccuracy(NCFKerasBenchmarkBase):
"""Benchmark NCF model using real data."""
def __init__(self,
output_dir=None,
root_data_dir=None,
default_flags=None,
**kwargs):
default_flags = {}
default_flags['dataset'] = 'ml-20m'
default_flags['num_gpus'] = 1
default_flags['train_epochs'] = 10
default_flags['clean'] = True
default_flags['batch_size'] = 99000
default_flags['learning_rate'] = 0.00382059
default_flags['beta1'] = 0.783529
default_flags['beta2'] = 0.909003
default_flags['epsilon'] = 1.45439e-07
default_flags['layers'] = [256, 256, 128, 64]
default_flags['num_factors'] = 64
default_flags['hr_threshold'] = 0.635
default_flags['ml_perf'] = True
default_flags['use_synthetic_data'] = False
default_flags['data_dir'] = os.path.join(root_data_dir, NCF_DATA_DIR_NAME)
super(NCFKerasAccuracy, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
**kwargs)
def _run_and_report_benchmark_mlperf_like(self):
"""Run test and report results.
Note: MLPerf like tests are not tuned to hit a specific hr@10 value, but
we want it recorded.
"""
self._run_and_report_benchmark(hr_at_10_min=0.61)
def _run_and_report_benchmark(self, hr_at_10_min=0.630, hr_at_10_max=0.645):
"""Run test and report results.
Note: Target is 0.635, but some runs are below that level. Until we have
multi-run tests, we have to accept a lower target.
Args:
hr_at_10_min: Minimum acceptable hr@10 value.
hr_at_10_max: Maximum acceptable hr@10 value.
"""
super(NCFKerasAccuracy, self)._run_and_report_benchmark(
hr_at_10_min=hr_at_10_min,
hr_at_10_max=hr_at_10_max)
def benchmark_1_gpu_early_stop(self):
self._setup()
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_force_v1_path_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.force_v2_in_keras_compile = False
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_early_stop(self):
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_force_v1_path_early_stop(self):
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.early_stopping = True
FLAGS.force_v2_in_keras_compile = False
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_run_eagerly_early_stop(self):
self._setup()
FLAGS.distribution_strategy = 'off'
FLAGS.early_stopping = True
FLAGS.run_eagerly = True
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_force_v1_path_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.enable_xla = True
FLAGS.force_v2_in_keras_compile = False
self._run_and_report_benchmark()
def benchmark_1_gpu_ctl_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
self._run_and_report_benchmark()
def benchmark_1_gpu_ctl_run_eagerly_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.run_eagerly = True
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_ctl_early_stop(self):
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.enable_xla = True
self._run_and_report_benchmark()
def benchmark_2_gpus_early_stop(self):
self._setup()
FLAGS.early_stopping = True
FLAGS.num_gpus = 2
FLAGS.eval_batch_size = 160000
self._run_and_report_benchmark()
def benchmark_2_gpus_ctl_early_stop(self):
"""NCF with custom training loop. Works only in TF 2.0."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.early_stopping = True
FLAGS.num_gpus = 2
FLAGS.eval_batch_size = 160000
self._run_and_report_benchmark()
#############################################
# Tests below with mlperf in the test name are of two types:
# 1) 1 GPU tests are based on MLPerf 0.5 and the TensorFlow pulled submission.
# 2) 8 GPU tests are based on MLPerf 0.5 and use NVIDIA's hyper parameters.
#
# The purpose of both is to get a number to compare to existing results. To do
# this the number of epochs is held constant rather than a race to a given
# accuracy. The accuracy validation is done by the "early_stop" tests.
#############################################
def benchmark_1_gpu_mlperf_like(self):
"""1 GPU using keras fit/compile."""
self._setup()
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_no_dist_strat_force_v1_path_mlperf_like(self):
"""1 GPU using compile/fit without dist_strat."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.distribution_strategy = 'off'
FLAGS.force_v2_in_keras_compile = False
self._run_and_report_benchmark()
def benchmark_1_gpu_no_dist_strat_mlperf_like(self):
"""1 GPU using compile/fit without dist_strat."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.distribution_strategy = 'off'
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_no_dist_strat_run_eagerly_mlperf_like(self):
self._setup()
FLAGS.train_epochs = 7
FLAGS.distribution_strategy = 'off'
FLAGS.run_eagerly = True
self._run_and_report_benchmark_mlperf_like()
def benchmark_xla_1_gpu_mlperf_like(self):
"""1 GPU using compile/fit with XLA."""
self._setup()
FLAGS.train_epochs = 7
FLAGS.enable_xla = True
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_mlperf_like(self):
"""1 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_fp16_mlperf_like(self):
"""1 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_1_gpu_ctl_run_eagerly_mlperf_like(self):
"""1 GPU using CTL with eager and distribution strategy."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.run_eagerly = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark()
def benchmark_xla_1_gpu_ctl_mlperf_like(self):
"""1 GPU using CTL with XLA."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.enable_xla = True
FLAGS.train_epochs = 7
self._run_and_report_benchmark_mlperf_like()
def benchmark_xla_1_gpu_ctl_fp16_mlperf_like(self):
"""1 GPU using CTL with XLA."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.enable_xla = True
FLAGS.train_epochs = 7
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_mlperf_like(self):
"""8 GPU using keras fit/compile."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 160000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_force_v1_path_mlperf_like(self):
"""8 GPU using keras fit/compile v1 codepath."""
self._setup()
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 160000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
FLAGS.force_v2_in_keras_compile = False
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_ctl_mlperf_like(self):
"""8 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 160000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_ctl_mlperf_like(self):
"""8 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 1048000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
self._run_and_report_benchmark_mlperf_like()
def benchmark_8_gpu_tf_data_ctl_fp16_mlperf_like(self):
"""8 GPU using CTL."""
self._setup()
FLAGS.keras_use_ctl = True
FLAGS.num_gpus = 8
FLAGS.train_epochs = 17
FLAGS.batch_size = 1048576
FLAGS.eval_batch_size = 1048000
FLAGS.learning_rate = 0.0045
FLAGS.beta1 = 0.25
FLAGS.beta2 = 0.5
FLAGS.epsilon = 1e-8
FLAGS.dtype = 'fp16'
FLAGS.loss_scale = 8192
FLAGS.train_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "training_cycle_*/*")
FLAGS.eval_dataset_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "eval_data/*")
FLAGS.input_meta_data_path = os.path.join(NCF_TF_DATA_1M_BATCH_DIR_NAME, "meta_data.json")
self._run_and_report_benchmark_mlperf_like()
class NCFKerasSynth(NCFKerasBenchmarkBase):
"""Benchmark NCF model using synthetic data."""
def __init__(self,
output_dir=None,
default_flags=None,
**kwargs):
default_flags = {}
default_flags['dataset'] = 'ml-20m'
default_flags['num_gpus'] = 1
default_flags['train_epochs'] = 8
default_flags['batch_size'] = 99000
default_flags['eval_batch_size'] = 160000
default_flags['learning_rate'] = 0.00382059
default_flags['beta1'] = 0.783529
default_flags['beta2'] = 0.909003
default_flags['epsilon'] = 1.45439e-07
default_flags['layers'] = [256, 256, 128, 64]
default_flags['num_factors'] = 64
default_flags['hr_threshold'] = 0.635
default_flags['use_synthetic_data'] = True
super(NCFKerasSynth, self).__init__(
output_dir=output_dir,
default_flags=default_flags,
**kwargs)
def benchmark_1_gpu(self):
self._setup()
self._run_and_report_benchmark()
def benchmark_2_gpus(self):
self._setup()
FLAGS.num_gpus = 2
self._run_and_report_benchmark()
if __name__ == '__main__':
tf.test.main()