forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathncf_estimator_main.py
195 lines (158 loc) · 6.77 KB
/
ncf_estimator_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.
The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import contextlib
import heapq
import json
import math
import multiprocessing
import os
import signal
import typing
# pylint: disable=g-bad-import-order
import numpy as np
from absl import app as absl_app
from absl import flags
from absl import logging
import tensorflow as tf
# pylint: enable=g-bad-import-order
from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import data_pipeline
from official.recommendation import data_preprocessing
from official.recommendation import ncf_common
from official.recommendation import neumf_model
from official.utils.flags import core as flags_core
from official.utils.logs import hooks_helper
from official.utils.logs import logger
from official.utils.logs import mlperf_helper
from official.utils.misc import distribution_utils
from official.utils.misc import model_helpers
FLAGS = flags.FLAGS
def construct_estimator(model_dir, params):
"""Construct either an Estimator or TPUEstimator for NCF.
Args:
model_dir: The model directory for the estimator
params: The params dict for the estimator
Returns:
An Estimator or TPUEstimator.
"""
distribution = ncf_common.get_v1_distribution_strategy(params)
run_config = tf.estimator.RunConfig(train_distribute=distribution,
eval_distribute=distribution)
model_fn = neumf_model.neumf_model_fn
if params["use_xla_for_gpu"]:
# TODO(seemuch): remove the contrib imput
from tensorflow.contrib.compiler import xla
logging.info("Using XLA for GPU for training and evaluation.")
model_fn = xla.estimator_model_fn(model_fn)
estimator = tf.estimator.Estimator(model_fn=model_fn, model_dir=model_dir,
config=run_config, params=params)
return estimator
def log_and_get_hooks(eval_batch_size):
"""Convenience function for hook and logger creation."""
# Create hooks that log information about the training and metric values
train_hooks = hooks_helper.get_train_hooks(
FLAGS.hooks,
model_dir=FLAGS.model_dir,
batch_size=FLAGS.batch_size, # for ExamplesPerSecondHook
tensors_to_log={"cross_entropy": "cross_entropy"}
)
run_params = {
"batch_size": FLAGS.batch_size,
"eval_batch_size": eval_batch_size,
"number_factors": FLAGS.num_factors,
"hr_threshold": FLAGS.hr_threshold,
"train_epochs": FLAGS.train_epochs,
}
benchmark_logger = logger.get_benchmark_logger()
benchmark_logger.log_run_info(
model_name="recommendation",
dataset_name=FLAGS.dataset,
run_params=run_params,
test_id=FLAGS.benchmark_test_id)
return benchmark_logger, train_hooks
def main(_):
with logger.benchmark_context(FLAGS), \
mlperf_helper.LOGGER(FLAGS.output_ml_perf_compliance_logging):
mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
run_ncf(FLAGS)
def run_ncf(_):
"""Run NCF training and eval loop."""
params = ncf_common.parse_flags(FLAGS)
num_users, num_items, num_train_steps, num_eval_steps, producer = (
ncf_common.get_inputs(params))
params["num_users"], params["num_items"] = num_users, num_items
producer.start()
model_helpers.apply_clean(flags.FLAGS)
estimator = construct_estimator(model_dir=FLAGS.model_dir, params=params)
benchmark_logger, train_hooks = log_and_get_hooks(params["eval_batch_size"])
total_training_cycle = FLAGS.train_epochs // FLAGS.epochs_between_evals
target_reached = False
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_LOOP)
for cycle_index in range(total_training_cycle):
assert FLAGS.epochs_between_evals == 1 or not mlperf_helper.LOGGER.enabled
logging.info("Starting a training cycle: {}/{}".format(
cycle_index + 1, total_training_cycle))
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.TRAIN_EPOCH,
value=cycle_index)
train_input_fn = producer.make_input_fn(is_training=True)
estimator.train(input_fn=train_input_fn, hooks=train_hooks,
steps=num_train_steps)
logging.info("Beginning evaluation.")
eval_input_fn = producer.make_input_fn(is_training=False)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_START,
value=cycle_index)
eval_results = estimator.evaluate(eval_input_fn, steps=num_eval_steps)
logging.info("Evaluation complete.")
hr = float(eval_results[rconst.HR_KEY])
ndcg = float(eval_results[rconst.NDCG_KEY])
loss = float(eval_results["loss"])
mlperf_helper.ncf_print(
key=mlperf_helper.TAGS.EVAL_TARGET,
value={"epoch": cycle_index, "value": FLAGS.hr_threshold})
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_ACCURACY,
value={"epoch": cycle_index, "value": hr})
mlperf_helper.ncf_print(
key=mlperf_helper.TAGS.EVAL_HP_NUM_NEG,
value={"epoch": cycle_index, "value": rconst.NUM_EVAL_NEGATIVES})
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_STOP, value=cycle_index)
# Benchmark the evaluation results
benchmark_logger.log_evaluation_result(eval_results)
# Log the HR and NDCG results.
logging.info(
"Iteration {}: HR = {:.4f}, NDCG = {:.4f}, Loss = {:.4f}".format(
cycle_index + 1, hr, ndcg, loss))
# If some evaluation threshold is met
if model_helpers.past_stop_threshold(FLAGS.hr_threshold, hr):
target_reached = True
break
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_STOP,
value={"success": target_reached})
producer.stop_loop()
producer.join()
# Clear the session explicitly to avoid session delete error
tf.keras.backend.clear_session()
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.RUN_FINAL)
if __name__ == "__main__":
logging.set_verbosity(logging.INFO)
ncf_common.define_ncf_flags()
absl_app.run(main)