forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_pretraining.py
216 lines (180 loc) · 7.95 KB
/
run_pretraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Run masked LM/next sentence masked_lm pre-training for BERT in tf2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
from absl import app
from absl import flags
from absl import logging
import tensorflow as tf
# Import BERT model libraries.
from official.bert import bert_models
from official.bert import common_flags
from official.bert import input_pipeline
from official.bert import model_saving_utils
from official.bert import model_training_utils
from official.bert import modeling
from official.bert import optimization
from official.utils.misc import tpu_lib
flags.DEFINE_string('input_files', None,
'File path to retrieve training data for pre-training.')
# Model training specific flags.
flags.DEFINE_integer(
'max_seq_length', 128,
'The maximum total input sequence length after WordPiece tokenization. '
'Sequences longer than this will be truncated, and sequences shorter '
'than this will be padded.')
flags.DEFINE_integer('max_predictions_per_seq', 20,
'Maximum predictions per sequence_output.')
flags.DEFINE_integer('train_batch_size', 32, 'Total batch size for training.')
flags.DEFINE_integer('num_steps_per_epoch', 1000,
'Total number of training steps to run per epoch.')
flags.DEFINE_float('warmup_steps', 10000,
'Warmup steps for Adam weight decay optimizer.')
common_flags.define_common_bert_flags()
FLAGS = flags.FLAGS
def get_pretrain_input_data(input_file_pattern, seq_length,
max_predictions_per_seq, batch_size, strategy):
"""Returns input dataset from input file string."""
# When using TPU pods, we need to clone dataset across
# workers and need to pass in function that returns the dataset rather
# than passing dataset instance itself.
use_dataset_fn = isinstance(strategy, tf.distribute.experimental.TPUStrategy)
if use_dataset_fn:
if batch_size % strategy.num_replicas_in_sync != 0:
raise ValueError(
'Batch size must be divisible by number of replicas : {}'.format(
strategy.num_replicas_in_sync))
# As auto rebatching is not supported in
# `experimental_distribute_datasets_from_function()` API, which is
# required when cloning dataset to multiple workers in eager mode,
# we use per-replica batch size.
batch_size = int(batch_size / strategy.num_replicas_in_sync)
def _dataset_fn(ctx=None):
"""Returns tf.data.Dataset for distributed BERT pretraining."""
input_files = []
for input_pattern in input_file_pattern.split(','):
input_files.extend(tf.io.gfile.glob(input_pattern))
train_dataset = input_pipeline.create_pretrain_dataset(
input_files,
seq_length,
max_predictions_per_seq,
batch_size,
is_training=True,
input_pipeline_context=ctx)
return train_dataset
return _dataset_fn if use_dataset_fn else _dataset_fn()
def get_loss_fn(loss_factor=1.0):
"""Returns loss function for BERT pretraining."""
def _bert_pretrain_loss_fn(unused_labels, losses, **unused_args):
return tf.keras.backend.mean(losses) * loss_factor
return _bert_pretrain_loss_fn
def run_customized_training(strategy,
bert_config,
max_seq_length,
max_predictions_per_seq,
model_dir,
steps_per_epoch,
steps_per_loop,
epochs,
initial_lr,
warmup_steps,
input_files,
train_batch_size,
use_remote_tpu=False):
"""Run BERT pretrain model training using low-level API."""
train_input_fn = functools.partial(get_pretrain_input_data, input_files,
max_seq_length, max_predictions_per_seq,
train_batch_size, strategy)
def _get_pretrain_model():
"""Gets a pretraining model."""
pretrain_model, core_model = bert_models.pretrain_model(
bert_config, max_seq_length, max_predictions_per_seq)
pretrain_model.optimizer = optimization.create_optimizer(
initial_lr, steps_per_epoch * epochs, warmup_steps)
if FLAGS.fp16_implementation == 'graph_rewrite':
# Note: when flags_obj.fp16_implementation == "graph_rewrite", dtype as
# determined by flags_core.get_tf_dtype(flags_obj) would be 'float32'
# which will ensure tf.compat.v2.keras.mixed_precision and
# tf.train.experimental.enable_mixed_precision_graph_rewrite do not double
# up.
pretrain_model.optimizer = tf.train.experimental.enable_mixed_precision_graph_rewrite(
pretrain_model.optimizer)
return pretrain_model, core_model
trained_model = model_training_utils.run_customized_training_loop(
strategy=strategy,
model_fn=_get_pretrain_model,
loss_fn=get_loss_fn(
loss_factor=1.0 /
strategy.num_replicas_in_sync if FLAGS.scale_loss else 1.0),
model_dir=model_dir,
train_input_fn=train_input_fn,
steps_per_epoch=steps_per_epoch,
steps_per_loop=steps_per_loop,
epochs=epochs,
use_remote_tpu=use_remote_tpu)
# Creates the BERT core model outside distribution strategy scope.
_, core_model = bert_models.pretrain_model(bert_config, max_seq_length,
max_predictions_per_seq)
# Restores the core model from model checkpoints and get a new checkpoint only
# contains the core model.
model_saving_utils.export_pretraining_checkpoint(
checkpoint_dir=model_dir, model=core_model)
return trained_model
def run_bert_pretrain(strategy):
"""Runs BERT pre-training."""
bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file)
if not strategy:
raise ValueError('Distribution strategy is not specified.')
# Runs customized training loop.
logging.info('Training using customized training loop TF 2.0 with distrubuted'
'strategy.')
use_remote_tpu = (FLAGS.strategy_type == 'tpu' and FLAGS.tpu)
return run_customized_training(
strategy,
bert_config,
FLAGS.max_seq_length,
FLAGS.max_predictions_per_seq,
FLAGS.model_dir,
FLAGS.num_steps_per_epoch,
FLAGS.steps_per_loop,
FLAGS.num_train_epochs,
FLAGS.learning_rate,
FLAGS.warmup_steps,
FLAGS.input_files,
FLAGS.train_batch_size,
use_remote_tpu=use_remote_tpu)
def main(_):
# Users should always run this script under TF 2.x
assert tf.version.VERSION.startswith('2.')
if not FLAGS.model_dir:
FLAGS.model_dir = '/tmp/bert20/'
strategy = None
if FLAGS.strategy_type == 'mirror':
strategy = tf.distribute.MirroredStrategy()
elif FLAGS.strategy_type == 'tpu':
# Initialize TPU System.
cluster_resolver = tpu_lib.tpu_initialize(FLAGS.tpu)
strategy = tf.distribute.experimental.TPUStrategy(cluster_resolver)
else:
raise ValueError('The distribution strategy type is not supported: %s' %
FLAGS.strategy_type)
if strategy:
print('***** Number of cores used : ', strategy.num_replicas_in_sync)
run_bert_pretrain(strategy)
if __name__ == '__main__':
app.run(main)