forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbert_models.py
433 lines (372 loc) · 16.6 KB
/
bert_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""BERT models that are compatible with TF 2.0."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import copy
import tensorflow as tf
from official.bert import modeling
def gather_indexes(sequence_tensor, positions):
"""Gathers the vectors at the specific positions.
Args:
sequence_tensor: Sequence output of `BertModel` layer of shape
(`batch_size`, `seq_length`, num_hidden) where num_hidden is number of
hidden units of `BertModel` layer.
positions: Positions ids of tokens in sequence to mask for pretraining of
with dimension (batch_size, max_predictions_per_seq) where
`max_predictions_per_seq` is maximum number of tokens to mask out and
predict per each sequence.
Returns:
Masked out sequence tensor of shape (batch_size * max_predictions_per_seq,
num_hidden).
"""
sequence_shape = modeling.get_shape_list(
sequence_tensor, name='sequence_output_tensor')
batch_size = sequence_shape[0]
seq_length = sequence_shape[1]
width = sequence_shape[2]
flat_offsets = tf.keras.backend.reshape(
tf.range(0, batch_size, dtype=tf.int32) * seq_length, [-1, 1])
flat_positions = tf.keras.backend.reshape(positions + flat_offsets, [-1])
flat_sequence_tensor = tf.keras.backend.reshape(
sequence_tensor, [batch_size * seq_length, width])
output_tensor = tf.gather(flat_sequence_tensor, flat_positions)
return output_tensor
class BertPretrainLayer(tf.keras.layers.Layer):
"""Wrapper layer for pre-training a BERT model.
This layer wraps an existing `bert_layer` which is a Keras Layer.
It outputs `sequence_output` from TransformerBlock sub-layer and
`sentence_output` which are suitable for feeding into a BertPretrainLoss
layer. This layer can be used along with an unsupervised input to
pre-train the embeddings for `bert_layer`.
"""
def __init__(self,
config,
bert_layer,
initializer=None,
float_type=tf.float32,
**kwargs):
super(BertPretrainLayer, self).__init__(**kwargs)
self.config = copy.deepcopy(config)
self.float_type = float_type
self.embedding_table = bert_layer.embedding_lookup.embeddings
self.num_next_sentence_label = 2
if initializer:
self.initializer = initializer
else:
self.initializer = tf.keras.initializers.TruncatedNormal(
stddev=self.config.initializer_range)
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.output_bias = self.add_weight(
shape=[self.config.vocab_size],
name='predictions/output_bias',
initializer=tf.keras.initializers.Zeros())
self.lm_dense = tf.keras.layers.Dense(
self.config.hidden_size,
activation=modeling.get_activation(self.config.hidden_act),
kernel_initializer=self.initializer,
name='predictions/transform/dense')
self.lm_layer_norm = tf.keras.layers.LayerNormalization(
axis=-1, epsilon=1e-12, name='predictions/transform/LayerNorm')
# Next sentence binary classification dense layer including bias to match
# TF1.x BERT variable shapes.
with tf.name_scope('seq_relationship'):
self.next_seq_weights = self.add_weight(
shape=[self.num_next_sentence_label, self.config.hidden_size],
name='output_weights',
initializer=self.initializer)
self.next_seq_bias = self.add_weight(
shape=[self.num_next_sentence_label],
name='output_bias',
initializer=tf.keras.initializers.Zeros())
super(BertPretrainLayer, self).build(unused_input_shapes)
def __call__(self,
pooled_output,
sequence_output=None,
masked_lm_positions=None):
inputs = modeling.pack_inputs(
[pooled_output, sequence_output, masked_lm_positions])
return super(BertPretrainLayer, self).__call__(inputs)
def call(self, inputs):
"""Implements call() for the layer."""
unpacked_inputs = modeling.unpack_inputs(inputs)
pooled_output = unpacked_inputs[0]
sequence_output = unpacked_inputs[1]
masked_lm_positions = unpacked_inputs[2]
mask_lm_input_tensor = gather_indexes(
sequence_output, masked_lm_positions)
lm_output = self.lm_dense(mask_lm_input_tensor)
lm_output = self.lm_layer_norm(lm_output)
lm_output = tf.matmul(lm_output, self.embedding_table, transpose_b=True)
lm_output = tf.nn.bias_add(lm_output, self.output_bias)
lm_output = tf.nn.log_softmax(lm_output, axis=-1)
logits = tf.matmul(pooled_output, self.next_seq_weights, transpose_b=True)
logits = tf.nn.bias_add(logits, self.next_seq_bias)
sentence_output = tf.nn.log_softmax(logits, axis=-1)
return (lm_output, sentence_output)
class BertPretrainLossAndMetricLayer(tf.keras.layers.Layer):
"""Returns layer that computes custom loss and metrics for pretraining."""
def __init__(self, bert_config, **kwargs):
super(BertPretrainLossAndMetricLayer, self).__init__(**kwargs)
self.config = copy.deepcopy(bert_config)
def __call__(self,
lm_output,
sentence_output=None,
lm_label_ids=None,
lm_label_weights=None,
sentence_labels=None):
inputs = modeling.pack_inputs([
lm_output, sentence_output, lm_label_ids, lm_label_weights,
sentence_labels
])
return super(BertPretrainLossAndMetricLayer, self).__call__(inputs)
def _add_metrics(self, lm_output, lm_labels, lm_label_weights,
lm_per_example_loss, sentence_output, sentence_labels,
sentence_per_example_loss):
"""Adds metrics."""
masked_lm_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
lm_labels, lm_output)
masked_lm_accuracy = tf.reduce_mean(masked_lm_accuracy * lm_label_weights)
self.add_metric(
masked_lm_accuracy, name='masked_lm_accuracy', aggregation='mean')
lm_example_loss = tf.reshape(lm_per_example_loss, [-1])
lm_example_loss = tf.reduce_mean(lm_example_loss * lm_label_weights)
self.add_metric(lm_example_loss, name='lm_example_loss', aggregation='mean')
next_sentence_accuracy = tf.keras.metrics.sparse_categorical_accuracy(
sentence_labels, sentence_output)
self.add_metric(
next_sentence_accuracy,
name='next_sentence_accuracy',
aggregation='mean')
next_sentence_mean_loss = tf.reduce_mean(sentence_per_example_loss)
self.add_metric(
next_sentence_mean_loss, name='next_sentence_loss', aggregation='mean')
def call(self, inputs):
"""Implements call() for the layer."""
unpacked_inputs = modeling.unpack_inputs(inputs)
lm_output = unpacked_inputs[0]
sentence_output = unpacked_inputs[1]
lm_label_ids = unpacked_inputs[2]
lm_label_ids = tf.keras.backend.reshape(lm_label_ids, [-1])
lm_label_ids_one_hot = tf.keras.backend.one_hot(lm_label_ids,
self.config.vocab_size)
lm_label_weights = tf.keras.backend.cast(unpacked_inputs[3], tf.float32)
lm_label_weights = tf.keras.backend.reshape(lm_label_weights, [-1])
lm_per_example_loss = -tf.keras.backend.sum(
lm_output * lm_label_ids_one_hot, axis=[-1])
numerator = tf.keras.backend.sum(lm_label_weights * lm_per_example_loss)
denominator = tf.keras.backend.sum(lm_label_weights) + 1e-5
mask_label_loss = numerator / denominator
sentence_labels = unpacked_inputs[4]
sentence_labels = tf.keras.backend.reshape(sentence_labels, [-1])
sentence_label_one_hot = tf.keras.backend.one_hot(sentence_labels, 2)
per_example_loss_sentence = -tf.keras.backend.sum(
sentence_label_one_hot * sentence_output, axis=-1)
sentence_loss = tf.keras.backend.mean(per_example_loss_sentence)
loss = mask_label_loss + sentence_loss
# TODO(hongkuny): Avoids the hack and switches add_loss.
final_loss = tf.fill(
tf.keras.backend.shape(per_example_loss_sentence), loss)
self._add_metrics(lm_output, lm_label_ids, lm_label_weights,
lm_per_example_loss, sentence_output, sentence_labels,
per_example_loss_sentence)
return final_loss
def pretrain_model(bert_config,
seq_length,
max_predictions_per_seq,
initializer=None):
"""Returns model to be used for pre-training.
Args:
bert_config: Configuration that defines the core BERT model.
seq_length: Maximum sequence length of the training data.
max_predictions_per_seq: Maximum number of tokens in sequence to mask out
and use for pretraining.
initializer: Initializer for weights in BertPretrainLayer.
Returns:
Pretraining model as well as core BERT submodel from which to save
weights after pretraining.
"""
input_word_ids = tf.keras.layers.Input(
shape=(seq_length,), name='input_word_ids', dtype=tf.int32)
input_mask = tf.keras.layers.Input(
shape=(seq_length,), name='input_mask', dtype=tf.int32)
input_type_ids = tf.keras.layers.Input(
shape=(seq_length,), name='input_type_ids', dtype=tf.int32)
masked_lm_positions = tf.keras.layers.Input(
shape=(max_predictions_per_seq,),
name='masked_lm_positions',
dtype=tf.int32)
masked_lm_weights = tf.keras.layers.Input(
shape=(max_predictions_per_seq,),
name='masked_lm_weights',
dtype=tf.int32)
next_sentence_labels = tf.keras.layers.Input(
shape=(1,), name='next_sentence_labels', dtype=tf.int32)
masked_lm_ids = tf.keras.layers.Input(
shape=(max_predictions_per_seq,), name='masked_lm_ids', dtype=tf.int32)
bert_submodel_name = 'bert_model'
bert_submodel = modeling.get_bert_model(
input_word_ids,
input_mask,
input_type_ids,
name=bert_submodel_name,
config=bert_config)
pooled_output = bert_submodel.outputs[0]
sequence_output = bert_submodel.outputs[1]
pretrain_layer = BertPretrainLayer(
bert_config,
bert_submodel.get_layer(bert_submodel_name),
initializer=initializer,
name='cls')
lm_output, sentence_output = pretrain_layer(pooled_output, sequence_output,
masked_lm_positions)
pretrain_loss_layer = BertPretrainLossAndMetricLayer(bert_config)
output_loss = pretrain_loss_layer(lm_output, sentence_output, masked_lm_ids,
masked_lm_weights, next_sentence_labels)
return tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids,
'masked_lm_positions': masked_lm_positions,
'masked_lm_ids': masked_lm_ids,
'masked_lm_weights': masked_lm_weights,
'next_sentence_labels': next_sentence_labels,
},
outputs=output_loss), bert_submodel
class BertSquadLogitsLayer(tf.keras.layers.Layer):
"""Returns a layer that computes custom logits for BERT squad model."""
def __init__(self, initializer=None, float_type=tf.float32, **kwargs):
super(BertSquadLogitsLayer, self).__init__(**kwargs)
self.initializer = initializer
self.float_type = float_type
def build(self, unused_input_shapes):
"""Implements build() for the layer."""
self.final_dense = tf.keras.layers.Dense(
units=2, kernel_initializer=self.initializer, name='final_dense')
super(BertSquadLogitsLayer, self).build(unused_input_shapes)
def call(self, inputs):
"""Implements call() for the layer."""
sequence_output = inputs
input_shape = sequence_output.shape.as_list()
sequence_length = input_shape[1]
num_hidden_units = input_shape[2]
final_hidden_input = tf.keras.backend.reshape(sequence_output,
[-1, num_hidden_units])
logits = self.final_dense(final_hidden_input)
logits = tf.keras.backend.reshape(logits, [-1, sequence_length, 2])
logits = tf.transpose(logits, [2, 0, 1])
unstacked_logits = tf.unstack(logits, axis=0)
if self.float_type == tf.float16:
unstacked_logits = tf.cast(unstacked_logits, tf.float32)
return unstacked_logits[0], unstacked_logits[1]
def squad_model(bert_config, max_seq_length, float_type, initializer=None):
"""Returns BERT Squad model along with core BERT model to import weights.
Args:
bert_config: BertConfig, the config defines the core Bert model.
max_seq_length: integer, the maximum input sequence length.
float_type: tf.dtype, tf.float32 or tf.bfloat16.
initializer: Initializer for weights in BertSquadLogitsLayer.
Returns:
Two tensors, start logits and end logits, [batch x sequence length].
"""
unique_ids = tf.keras.layers.Input(
shape=(1,), dtype=tf.int32, name='unique_ids')
input_word_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_ids')
input_mask = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
input_type_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='segment_ids')
core_model = modeling.get_bert_model(
input_word_ids,
input_mask,
input_type_ids,
config=bert_config,
name='bert_model',
float_type=float_type)
# `BertSquadModel` only uses the sequnce_output which
# has dimensionality (batch_size, sequence_length, num_hidden).
sequence_output = core_model.outputs[1]
if initializer is None:
initializer = tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range)
squad_logits_layer = BertSquadLogitsLayer(
initializer=initializer, float_type=float_type, name='squad_logits')
start_logits, end_logits = squad_logits_layer(sequence_output)
squad = tf.keras.Model(
inputs={
'unique_ids': unique_ids,
'input_ids': input_word_ids,
'input_mask': input_mask,
'segment_ids': input_type_ids,
},
outputs=[unique_ids, start_logits, end_logits],
name='squad_model')
return squad, core_model
def classifier_model(bert_config,
float_type,
num_labels,
max_seq_length,
final_layer_initializer=None):
"""BERT classifier model in functional API style.
Construct a Keras model for predicting `num_labels` outputs from an input with
maximum sequence length `max_seq_length`.
Args:
bert_config: BertConfig, the config defines the core BERT model.
float_type: dtype, tf.float32 or tf.bfloat16.
num_labels: integer, the number of classes.
max_seq_length: integer, the maximum input sequence length.
final_layer_initializer: Initializer for final dense layer. Defaulted
TruncatedNormal initializer.
Returns:
Combined prediction model (words, mask, type) -> (one-hot labels)
BERT sub-model (words, mask, type) -> (bert_outputs)
"""
input_word_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_word_ids')
input_mask = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_mask')
input_type_ids = tf.keras.layers.Input(
shape=(max_seq_length,), dtype=tf.int32, name='input_type_ids')
bert_model = modeling.get_bert_model(
input_word_ids,
input_mask,
input_type_ids,
config=bert_config,
float_type=float_type)
pooled_output = bert_model.outputs[0]
if final_layer_initializer is not None:
initializer = final_layer_initializer
else:
initializer = tf.keras.initializers.TruncatedNormal(
stddev=bert_config.initializer_range)
output = tf.keras.layers.Dropout(rate=bert_config.hidden_dropout_prob)(
pooled_output)
output = tf.keras.layers.Dense(
num_labels,
kernel_initializer=initializer,
name='output',
dtype=float_type)(
output)
return tf.keras.Model(
inputs={
'input_word_ids': input_word_ids,
'input_mask': input_mask,
'input_type_ids': input_type_ids
},
outputs=output), bert_model