Back | Next | Contents
Object Detection
To process test images with detectNet
and TensorRT on the Jetson, we can use the detectnet-console
program.
detectnet-console
accepts command-line arguments representing the path to the input image and path to the output image (with the bounding box overlays rendered). Some test images are also included with the repo.
To specify your model that you downloaded from DIGITS in the previous step, use the syntax to detectnet-console
below. First, for convienience, set the path to your extracted snapshot into a $NET
variable:
$ NET=20170504-190602-879f_epoch_100
$ ./detectnet-console dog_0.jpg output_0.jpg \
--prototxt=$NET/deploy.prototxt \
--model=$NET/snapshot_iter_38600.caffemodel \
--input_blob=data \
--output_cvg=coverage \
--output_bbox=bboxes
note: the
input_blob
,output_cvg
, andoutput_bbox
arguments may be omitted if your DetectNet layer names match the defaults above (i.e. if you are using the prototxt from following this tutorial). These optional command line parameters are provided if you are using a customized DetectNet with different layer names.
Alternatively, to load one of the pretrained snapshots that comes with the repo, you can specify the optional --network
flag which changes the detection model being used (the default network is PedNet).
Here's an example of locating humans in an image with the default PedNet model:
$ ./detectnet-console peds-004.jpg output.jpg
$ ./detectnet-console.py peds-004.jpg output.jpg
Below is a table of the pre-trained object detection networks available for download, and the associated --network
argument to detectnet-console
used for loading the pre-trained models:
Model | CLI argument | NetworkType enum | Object classes |
---|---|---|---|
SSD-Mobilenet-v1 | ssd-mobilenet-v1 |
SSD_MOBILENET_V1 |
91 (COCO classes) |
SSD-Mobilenet-v2 | ssd-mobilenet-v2 |
SSD_MOBILENET_V2 |
91 (COCO classes) |
SSD-Inception-v2 | ssd-inception-v1 |
SSD_INCEPTION_V2 |
91 (COCO classes) |
DetectNet-COCO-Dog | coco-dog |
COCO_DOG |
dogs |
DetectNet-COCO-Bottle | coco-bottle |
COCO_BOTTLE |
bottles |
DetectNet-COCO-Chair | coco-chair |
COCO_CHAIR |
chairs |
DetectNet-COCO-Airplane | coco-airplane |
COCO_AIRPLANE |
airplanes |
ped-100 | pednet |
PEDNET |
pedestrians |
multiped-500 | multiped |
PEDNET_MULTI |
pedestrians, luggage |
facenet-120 | facenet |
FACENET |
faces |
note: to download additional networks, run the Model Downloader tool
$ cd jetson-inference/tools
$ ./download-models.sh
You can specify which model to load by setting the --network
flag on the command line to one of the corresponding CLI arguments from the table above. By default, PedNet is loaded (pedestrian detection) if the optional --network
flag isn't specified.
Let's try running some of the other COCO models:
# C++
$ ./detectnet-console --network=coco-dog dog_1.jpg output_1.jpg
# Python
$ ./detectnet-console.py --network=coco-dog dog_1.jpg output_1.jpg
# C++
$ ./detectnet-console --network=coco-bottle bottle_0.jpg output_2.jpg
# Python
$ ./detectnet-console.py --network=coco-bottle bottle_0.jpg output_2.jpg
# C++
$ ./detectnet-console --network=coco-airplane airplane_0.jpg output_3.jpg
# Python
$ ./detectnet-console.py --network=coco-airplane airplane_0.jpg output_3.jpg
Some models support the detection of multiple types of objects. For example, when using the multiped
model on images containing luggage or baggage in addition to pedestrians, the 2nd object class is rendered with a green overlay:
# C++
$ ./detectnet-console --network=multiped peds-003.jpg output_4.jpg
# Python
$ ./detectnet-console.py --network=multiped peds-003.jpg output_4.jpg
Next, we'll run object detection on a live camera stream.
Next | Running the Live Camera Detection Demo
Back | Downloading the Detection Model to Jetson
© 2016-2019 NVIDIA | Table of Contents